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Abstract

The purpose of this study is to present an averaging principle for Hilfer fractional stochastic

differential pantograph equations (FSDPE). Under appropriate non-Lipschitz conditions, the

mean-square sense and probability of solutions to averaged stochastic systems can be used to

approximate solutions to HFSDPE. Finally, an example is provided to demonstrate the results’

viability. Furthermore, our findings have greatly broadened prior findings.

Keywords: Hilfer fractional stochastic differential system, Averaging principle, Pantograph

equations.
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1 Introduction

Fractional differential equations are the generalization of classical ordinary differential equations

(ODEs) with arbitrary order see [1, 2]. Pantograph equations (PEs) [15] are a class of unbounded

delay equations that have been utilized to express a variety of applications, including those in

biology, electrodynamics, finance, and other nonlinear dynamical systems,(see [16, 17]). Numerous

academics have extensively researched the existence, uniqueness, and stability of various types of
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pantograph equations based on these fundamental aspects. Naturally, a few outstanding and

significant papers have also appeared in our view (see [18, 19, 20] and references therein). The nature

of solutions for fractional stochastic differential pantograph equations (FSDPEs) in Euclidean space

n-dimensional Rn [3, 4], is particularly interesting in practical applications. Non-linear FSDPEs

solutions are extremely challenging to solve. As a result, we used symmetrical methodologies and

tactics across the board. It has had a significant impact on the evolution of partial calculus [5, 7].

On the other hand, Khasminiskii [8] focused on analysing the convergence of idle systems on the

drag time scale ε→ 0, in order to resolve uncertain issues. A typical approach that is highly successful

for investigating the use of fractional stochastic differential equations (FSDE) in many interesting

disciplines is the AP in stochastic fractional dynamical systems. The averaging method proposes a

potent tool for achieving equilibrium between complex models and simple systems (see [9, 10, 11, 13]).

For instance, few authors have addressed the AP of FSDEs, for example Abouagwa and Ji Li looked

into the approximation properties of solutions to Itô-Doob FSDEs with non-Lipschitz coefficients [13].

The averaging principle for SDEs with Caputo fractional derivative was investigated by Wenjing et

al. [14]. This work is motivated by the fact that the averaging concept for Hilfer FSDPEs has not yet

been addressed in the literature. The highlights and major contributions of this paper are reflected in

the subsequent key aspects:

(i) Initially, the effort to study the characteristic of solutions for a class of Hilfer FSDPEs via the

averaging principle (AP) under non-Lipschitz conditions is made. Comparing with literatures

[20, 21], the corresponding conditions are required to satisfy the Lipschitz condition or the local

Lipschitz condition. The Lipschitz condition usually fails in several practical situations, though.

Therefore, in our study, the non-Lipschitz conditions which are significantly weaker than the

Lipschitz condition will take the place of the Lipschitz condition.

(ii) The impact of delay terms on the AP for the relevant Hilfer stochastic system has not been

taken into consideration in the prior literature [10, 14]. The delay effects, however, do exist in

certain Hilfer stochastic differential systems. As a result, in this study, we look at delay Hilfer

stochastic differential equations with a linear delay τ(ι) = θι with 0 < θ < 1.

The purpose of this study is to establish the averaging principle for Hilfer FSDPEs in the following

form

Dψ,n
0+ w(ι) = l (ι,w(ι),w(θι)) + m (ι,w(ι),w(θι))

dB(ι)

dι

I(1−ψ)(1−n)
0+ w(0) = w0, (1.1)

where ι ∈ [0, T ], w0 ∈ Rn is the initial value, which is =0−measurable on Rn and satisfies E|w0|2 <∞,

0 < θ < 1, Dψ,n
0+ is the Hilfer fractional derivative with 0 ≤ ψ ≤ 1, 1

2 < n < 1, l : [0, T ]×Rn×Rn → Rn,
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m : [0, T ] × Rn × Rn → Rn×m, and B(ι) is a m-dimensional Brownian motion on the complete

probability space (Ω,=,P).

2 Preliminaries

Definition 2.1. [6] The fractional integral operator of order n > 0 is expressed as

Inl(ι) =
1

Γ(n)

∫ ι

0

l(s)

(ι− s)1−nds, ι > 0, (2.1)

where Γ(·) is the Gamma function.

Definition 2.2. [6] The hilfer fractional derivative of order 0 < ψ < 1 and 0 < n < 1 is interpreted

as

Dψ,n
0+ l(ι) = Iψ(1−n)

0+

d

dι
I(1−ψ)(1−n)

0+ l(ι),

where D = d
dι .

Definition 2.3. An Rn−valued stochastic process {w(ι)}0≤ι≤T is said to be a unique solution of (1.1)

if,

(i) {w(ι)} is continuous with respect to ι and =ι− adapted.

(ii) l(ι,w(ι),w(θι)) ∈ L 1([0, T ]; Rn) and m(ι,w(ι),w(θι)) ∈ L 2([0, T ]; Rn×m).

(iii) For all ι ∈ [0, T ], we have

w(ι) =
ι(ψ−1)(1−n)

Γ(ψ(1− n) + n)
w0 +

1

Γ(n)

∫ ι

0
(ι− s)n−1l(s,w(s),w(θs))ds

+
1

Γ(n)

∫ ι

0
(ι− s)n−1m(s,w(s),w(θs))dB(s). (2.2)

(iv) For w∗(ι), we have P {w(ι) = w∗(ι), ∀ ι ∈ [0, T ]} = 1.

We impose the subsequent conditions:

(H1) There exist a function Φ(·) such that, for any fixed ι ≥ 0 and wi, yi ∈ Rn, i = 1, 2, we have

|l(ι,w1, y1)− l(ι,w2, y2)|2 ∨ |m(ι,w1, y1)−m(ι,w2, y2)|2 ≤ Φ
(
ι, |w1 −w2|2, |y1 − y2|2

)
, (2.3)

where Φ(·) satisfies Φ(ι, 0, 0) = 0 and define Ω = [0,+∞) × [0,+∞) and
∫

Ω
1

Φ(ι,u,v)duv = ∞

and there exist non-negative functions λi(ι), i = 1, 2, 3 such that for u, v ≥ 0, Φ(ι, u, v) ≤

λ1(ι) + λ2(ι)u + λ3(ι)v and
∫ T

0 λi(ι)dι <∞, i = 1, 2, 3.
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3 Main Results

Initially, let us consider the standard form of the system (1.1).

wε(ι) =
ι(ψ−1)(1−n)

Γ(ψ(1− n) + n)
w0 +

ε

Γ(n)

∫ ι

0
(ι− s)n−1l (s,wε(s),wε(θs)) ds

+

√
ε

Γ(n)

∫ ι

0
(ι− s)n−1m (s,wε(s),wε(θs)) dB(s), (3.1)

where ε ∈ (0, ε0] is a positive small parameter and ε0 is a given fixed number.

Before concluding with the AP for SPE, there exist measurable function l∗ : Rn×Rn → Rn and

m∗ : Rn ×Rn → Rn×m such that the following holds.

(H2) For T1 ∈ [0, T ], w, y ∈ Rn, there exist positive bounded functions Ψi(T1), i = 1, 2 such that

1

T1

∫ T1
0
|l (s,w, y)− l∗ (w, y) |2ds ≤ $1(T1)

(
|w|2 + |y|2

)
,

1

T1

∫ T1
0
|m (s,w, y)−m∗ (w, y) |2ds ≤ $1(T1)

(
|w|2 + |y|2

)
, (3.2)

where lim
T1→∞

$i(T1) = 0. The solution wε(ι) converges, as ε→ 0 to the solution w∗ε(ι) of the averaged

system:

w∗ε(ι) =
ι(ψ−1)(1−n)

Γ(ψ(1− n) + n)
w0 +

ε

Γ(n)

∫ ι

0
(ι− s)n−1l∗ (w∗ε(s),w

∗
ε(θs)) ds

+

√
ε

Γ(n)

∫ ι

0
(ι− s)n−1m∗ (w∗ε(s),w

∗
ε(θs)) dB(s), (3.3)

as ε→ 0 and ι ∈ [0, T ].

Theorem 3.1. Assume that the conditions (H1),(H2) hold. Then, for a given arbitrarily small number

%1 > 0, there exist M > 0, ε ∈ (0, ε1] and τ ∈ (0, 1) such that for all ε ∈ (0, ε1], we have

E

(
sup

ι∈[−τ,M ε−τ ]

|wε(ι)−w∗ε(ι)|2
)
≤ %1.

Proof . From (3.1) and (3.3), we may obtain for ι ∈ [0, u] ⊂ [0, T ], we get

wε(ι)−w∗ε(ι) =
ε

Γ(n)

∫ ι

0
(ι− s)h−1 [l (s,wε(s),wε(θs))− l∗ (w∗ε(s),w

∗
ε(θs))] ds

+

√
ε

Γ(n)

∫ ι

0
(ι− s)h−1 [m (s,wε(s),wε(θs))−m∗ (w∗ε(s),w

∗
ε(θs))] dB(s).

Applying the elementary inequality,

E
(

sup
0≤ι≤u

|wε(ι)−w∗ε(ι)|2
)

≤ 2ε2

[Γ(n)]2
E sup

0≤ι≤u

∣∣∣∣ ∫ ι

0
(ι− s)n−1 [l (s,wε(s),wε(θs))− l∗ (w∗ε(s),w

∗
ε(θs))] ds

∣∣∣∣2
+

2ε

[Γ(n)]2
E sup

0≤ι≤u

∣∣∣∣ ∫ ι

0
(ι− s)n−1 [m (s,wε(s),wε(θs))−m∗ (w∗ε(s),w

∗
ε(θs))] dB(s)

∣∣∣∣2
= I1 + I2.
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Using the elementary inequality,

I1 ≤ 4ε2

[Γ(n)]2
E sup

0≤ι≤u

∣∣∣∣ ∫ ι

0
(ι− s)n−1 [l (s,wε(s),wε(θs))− l∗ (s,w∗ε(s),w

∗
ε(θs))] ds

∣∣∣∣2
+

4ε2

[Γ(n)]2
E sup

0≤ι≤u

∣∣∣∣ ∫ ι

0
(ι− s)n−1 [l (s,w∗ε(s),w

∗
ε(θs))− l∗ (w∗ε(s),w

∗
ε(θs))] ds

∣∣∣∣2
= I11 + I12.

Using Cauchy Schwartz inequality,

I11 ≤ 4ε2

[Γ(n)]2
E sup

0≤ι≤u

∣∣∣∣ ∫ ι

0
(ι− s)n−1 [l (s,wε(s),wε(θs))− l (s,w∗ε(s),w

∗
ε(θs))] ds

∣∣∣∣2
≤ 4ε2u2n−1

(2n− 1)[Γ(n)]2
E sup

0≤ι≤u

∫ ι

0
Φ

(
s,

∣∣∣∣wε(s)−w∗ε(s)

∣∣∣∣2, ∣∣∣∣wε(θs)−w∗ε(θs)

∣∣∣∣2
)
ds

≤ 4ε2u2n−1

(2n− 1)[Γ(n)]2
E sup

0≤ι≤u

∫ ι

0

[
λ1(s) + λ2(s)|wε(s)−w∗ε(s)|2 + λ3(s)|wε(θs)−w∗ε(θs)|2

]
ds

≤ 4ε2u2n

(2n− 1)[Γ(n)]2
sup

0≤ι≤u
λ1(ι) + 4

ε2u2n−1

(2n− 1)[Γ(n)]2

3∑
i=2

sup
0≤ι≤u

λi(ι)

∫ u

0
E sup

0≤s1≤s
|wε(s1)−w∗ε(s1)|2ds.

Also, by (H2) and Cauchy-Schwartz inequality, we have

I12 =
4ε2

[Γ(n)]2
E sup

0≤ι≤u

∣∣∣∣ ∫ ι

0
(ι− s)n−1 [l (s,w∗ε(s),w

∗
ε(θs))− l∗ (w∗ε(s),w

∗
ε(θs))] ds

∣∣∣∣2
≤ 4ε2u2n

(2n− 1)[Γ(n)]2
E sup

0≤ι≤u

1

ι

∫ ι

0

∣∣∣∣l (s,w∗ε(s),w∗ε(θs))− l∗ (w∗ε(s),w
∗
ε(θs))

∣∣∣∣2ds
≤ 8ε2u2n

(2n− 1)[Γ(n)]2

(
sup

0≤ι≤u
$1(ι)

)
E
[

sup
0≤ι≤u

|w∗ε(ι)|2
]
.

Using elementary inequality,

I2 ≤ 2ε

[Γ(n)]2
E sup

0≤ι≤u

∣∣∣∣ ∫ ι

0
(ι− s)n−1 [m (s,wε(s),wε(θs))−m∗ (w∗ε(s),w

∗
ε(θs))] dB(s)

∣∣∣∣2
≤ 4ε

[Γ(n)]2
E sup

0≤ι≤u

∣∣∣∣ ∫ ι

0
(ι− s)n−1 [m (s,wε(s),wε(θs))−m (s,w∗ε(s),w

∗
ε(θs))] dB(s)

∣∣∣∣2
+

4ε

[Γ(n)]2
E sup

0≤ι≤u

∣∣∣∣ ∫ ι

0
(ι− s)n−1 [m (s,w∗ε(s),w

∗
ε(θs))−m∗ (w∗ε(s),w

∗
ε(θs))] dB(s)

∣∣∣∣2
= I21 + I22.

From (H1) and Burkholder-Davis-Gundy inequality, we have

I21 ≤ 4ε

[Γ(n)]2
E sup

0≤ι≤u

∣∣∣∣ ∫ ι

0
(ι− s)n−1 [m (s,wε(s),wε(θs))−m (s,w∗ε(s),w

∗
ε(θs))] dB(s)

∣∣∣∣2
≤ 16εu2n−1

(2n− 1)[Γ(n)]2
E sup

0≤ι≤u

∫ ι

0
Φ
(
s,
∣∣wε(s)−w∗ε(s)

∣∣2, ∣∣wε(θs)−w∗ε(θs)
∣∣2) ds

≤ 16εu2n−1

(2n− 1)[Γ(n)]2
E sup

0≤ι≤u

∫ ι

0

[
λ1(s) + λ2(s)

∣∣wε(s)−w∗ε(s)
∣∣2 + λ3(s)

∣∣wε(θs)−w∗ε(θs)
∣∣2] ds

≤ 16εu2n

(2n− 1)[Γ(n)]2
sup

0≤ι≤u
λ1(ι) + 16

εu2n−1

(2n− 1)[Γ(n)]2

3∑
i=2

sup
0≤ι≤u

λi(ι)

∫ u

0
E sup

0≤s1≤s

∣∣wε(s1)−w∗ε(s1)
∣∣2ds.
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From the hypotheses (H2) and Burkholder-Davis-Gundy inequality, we have

I22 ≤ 4ε

[Γ(n)]2
E sup

0≤ι≤u

∣∣∣∣ ∫ ι

0
(ι− s)n−1 [m (s,w∗ε(s),w

∗
ε(θs))−m∗ (w∗ε(s),w

∗
ε(θs))] dB(s)

∣∣∣∣2
≤ 16εu2n−1

(2n− 1)[Γ(n)]2
E sup

0≤ι≤u

1

ι

∫ ι

0

∣∣m (s,w∗ε(s),w
∗
θs)−m∗ (w∗ε(s),w

∗
ε(θs))

∣∣2ds
≤ 16εu2n−1

(2n− 1)[Γ(n)]2

(
sup

0≤ι≤u
$2(ι)

)
E
[

sup
0≤ι≤u

∣∣w∗ε(ι)∣∣2 + sup
0≤ι≤u

∣∣w∗ε(θι)∣∣2]
≤ 32εu2n−1

(2n− 1)[Γ(n)]2

(
sup

0≤ι≤u
$2(ι)

)
E
[

sup
0≤ι≤u

|w∗ε(ι)|2
]
.

By the estimation of I11,I12,I21 and I22, we obtain

E
[

sup
0≤ι≤u

∣∣wε(ι)−w∗ε(ι)
∣∣2] ≤ 4ε2u2n

(2n− 1)[Γ(n)]2
sup

0≤ι≤u
λ1(ι) +

4ε2u2n−1

(2n− 1)[Γ(n)]2

3∑
i=2

sup
0≤ι≤u

λi(ι)

×
∫ u

0
E sup

0≤s1≤s
|wε(s1)−w∗ε(s1)|2ds+

8ε2u2n

(2n− 1)[Γ(n)]2

(
sup

0≤ι≤u
$1(ι)

)
× E

[
sup

0≤ι≤u
|w∗ε(ι)|2

]
+

16εu2n

(2n− 1)[Γ(n)]2
sup

0≤ι≤u
λ1(ι)

+
16εu2n−1

(2n− 1)[Γ(n)]2

3∑
i=2

sup
0≤ι≤u

λi(ι)

∫ u

0
E sup

0≤s1≤s

∣∣wε(s1)−w∗ε(s1)
∣∣2ds

+
32εu2n−1

(2n− 1)[Γ(n)]2

(
sup

0≤ι≤u
$2(ι)

)
E
[

sup
0≤ι≤u

|w∗ε(ι)|2
]

≤ 4Mλε
2u2n

(2n− 1)[Γ(n)]2
+

16εu2nMλ

(2n− 1)[Γ(n)]2
+

8ε2u2nM$

(2n− 1)[Γ(n)]2
+

32εu2n−1M$

(2n− 1)[Γ(n)]2

+

[
8ε2u2n−1

(2n− 1)[Γ(n)]2
+

32εu2n−1

(2n− 1)[Γ(n)]2

] ∫ u

0
E sup

0≤s1≤s

∣∣wε(s1)−w∗ε(s1)
∣∣2ds,

where,{
sup

0≤ι≤u
$1(ι)E

[
sup

0≤ι≤u

∣∣w∗ε(ι)∣∣2, ] , sup
0≤ι≤u

$2(ι)E
[

sup
0≤ι≤u

∣∣w∗ε(ι)∣∣2, ]} = M$,

{
sup

0≤ι≤u
λi(ι), i = 1, 2, 3

}
= Mλ.

By Gronwall-Bellman inequality, we get

E
[

sup
0≤ι≤u

∣∣wε(ι)−w∗ε(ι)
∣∣2] ≤

[
4Mλε

2u2n

(2n− 1)[Γ(n)]2
+

16εu2nMλ

(2n− 1)[Γ(n)]2
+

8ε2u2nM$

(2n− 1)[Γ(n)]2
+

32εu2n−1M$

(2n− 1)[Γ(n)]2

]
× e

[
8ε2u2n−1

(2n−1)[Γ(n)]2
+ 32εu2n−1

(2n−1)[Γ(n)]2

]
,

which implies M > 0 and τ ∈ (0, 1) 3 for ι ∈ [0,M ε−τ ] ⊂ [0, T ] having

E

(
sup

ι∈[0,M ε−τ ]

∣∣wε(ι)−w∗ε(ι)
∣∣2) ≤ Kε1−τ .

where,

K =

[
4MλM

2nε1+τ−2τn

(2n− 1)[Γ(n)]2
+

16MλM
2nετ−2n

(2n− 1)[Γ(n)]2
+

8M$M 2nε1+τ−2τn

(2n− 1)[Γ(n)]2
+

32M$M 2n−1ε2τ(1−n)

(2n− 1)[Γ(n)]2

]

× e

[
8M2n−1ε1+2τ(1−n)

(2n−1)[Γ(n)]2
+ 32M2n−1ε2τ(1−n)

(2n−1)[Γ(n)]2

]
,
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is a constant. For arbitrary given number δ1, ∃ ε1 ∈ (0, ε0] such that, for every ε ∈ (0, ε1] and

ι ∈ [0,M ε−τ ], we have

E

(
sup

ι∈[0,M ε−τ ]

|wε(ι)−w∗ε(ι)|2
)
≤ δ1.

This completes the proof.

Theorem 3.2. Assuming the conditions of the Theorem 3.1 hold, then for a given arbitrarily small

number δ2 > 0, there exists M > 0, ε1 ∈ (0, ε0] and τ ∈ (0, 1), 3 for ε ∈ (0, ε1], we have

lim
ε→0

P

(
sup

ι∈[0,M ε−τ ]

|wε(ι)−w∗ε(ι)| > δ2

)
= 0.

Proof . Given δ2 > 0, by Chebyshev’s inequality and Theorem 3.1, we have

P

(
sup

ι∈[0,M ε−τ ]

|wε(ι)−w∗ε(ι)| > δ2

)
≤ 1

δ2
2

E

(
sup

ι∈[0,M ε−τ ]

|wε(ι)−w∗ε(ι)|2
)

≤ 1

δ2
2

Kε1−τ → 0 as ε→ 0.

Thus the proof is complete.

4 Illustration

Consider, the hilfer FSPDEs of the form:

D
1
2
, 3
4wε = ε

(
2wε cos2(ι)−wε sin2

(
1

2
ι

))
dι+

√
εdB(ι)

I
1
8

0+wε(0) = w0, ι ∈ [0, π], (4.1)

l (ι,wε(ι),wε(θι)) = 2wε cos2(ι)−wε sin2

(
1

2
ι

)
,

m (ι,wε(ι),wε(θι)) = 1. (4.2)

Let,

l∗ (ι,wε(ι),wε(θι)) =
1

π

∫ π

0
l (ι,wε(ι),wε(θι)) =

wε

2
,

m∗ (ι,wε(ι),wε(θι)) = 1. (4.3)

Therefore, the simplified stochastic PEs 4.1 can be defined as

D
1
2
, 3
4w∗ε(ι) = ε

w∗ε
2
dι+

√
εdB(ι), (4.4)
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Evidently, the conditions of Theorem 3.1 and Theorem 3.2 gets satisfied for the functions defined in

(4.1)-(4.4). Therefore we obtain,

E

(
sup

ι∈[0,M ε−τ ]

|wε(ι)−w∗ε(ι)|2
)
≤ δ1,

lim
ε→0

P

(
sup

ι∈[0,M ε−τ ]

|wε(ι)−w∗ε(ι)| > δ2

)
= 0.

5 Conclusion

This works concerns with the AP for hilfer FSPDEs which is new to the literature. We obtain solutions

for SPEs that can be approximated by solutions to averaged stochastic systems in the mean-square

sense and probability under suitable non-Lipschitz conditions. The AP for FSPDEs with Levy noise

and time delays, as well as G-Brownian motion with non-Lipschitz conditions, would be an intriguing

expansion of our research in the future.
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