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Abstract 

 
Purpose: Transcriptomics has been revolutionized by the development of microarray 
technology, which makes it possible to simultaneously measure thousands of genes' levels 
of gene expression. This innovation holds an immense potential in understanding 
cardiovascular diseases such as Ischemic Cardiomyopathy (ICM) and Non-Ischemic 
Cardiomyopathy (NICM), which present substantial health concerns on a global scale 
implying the need for studying ICM and NICM exhaustively. The primary objective of 
this proof-of-concept paper aims at uncovering potential biomarkers and learn using data-
driven method to identify important genes that are differentially expressed. 

Methods: Microarray data from Gene Expression Omnibus (GEO) repository provided 
the dataset, which includes expression data from peripheral blood mononuclear cells 
(PBMC) of patients with ischemic and non-ischemic cardiomyopathy as well as a control 
group that was age and gender-matched. This research paper endeavours to conduct 
comprehensive microarray data analysis for transcriptomic profiling aimed at the 
identification of differentially expressed genes (DEG) associated with cardiomyopathy. 
Leveraging a data science process model, this study delves into the exploration and 
interpretation of a specific dataset, GDS3115, curated for its relevance to cardiomyopathy.  

Results: In total, five DEG showing significant differences in their Gene Expression 
Profiles to make diagnostic / prognostic analysis were identified. The inferences are 
tabulated and plotted the DEG in volcano plot as an interpretation of result obtained. 

Conclusion: Candidate biomarker genes such as CX3CR1C, 
HSPA1L///HSPA1B///HSPA1A, JUN, ZNF331, RORA are ICM’s therapeutic targets. 
This study identified several DEG that may be involved in the pathogenesis of 
ICM/NICM. This abstract synthesizes the research idea, workflow, methodologies 



Dr.M.Rose Margaret, 2024 Advanced Engineering Science 
  
 

674 
 
 

employed, and the potential implications of the study in identifying cardiomyopathy 
related genes via Biological analysis using the GDS3115 dataset. 

 
Keywords: ischemic cardiomyopathy, drugs, non-ischemic cardiomyopathy, Robust 
Multi-Array (RMA), IQR, Gene Filtering. 

Introduction: 
The last stage of coronary artery diseases are ICM which have coronary artery 
constrictions, reactive cellular hypertrophies, myocyte deaths, and ventricular scars as 
characteristics [9]. This kind of cardio myopathy carries a significant danger to one's 
health because of the high rate of sudden cardiac death among ICM patients worldwide 
[1]. Surgical vascular bypass, interventional angioplasty, and medication therapy are the 
three main traditional treatment modalities for ICM [2]. Nonetheless, certain patients' 
vascular lesions reveal tiny vessel illnesses that are unsuitable for 

vascular obstructive intervention or surgery [12]. Therefore, novel treatments for ICM 
that meet present clinical requirements are required. 

 
The etiology of cardiomyopathy has been successfully predicted by gene expression 
profiling [5]. Furthermore, the topological structure of biological networks has been used 
to identify a few putative disease-related gene markers [7, 8]. Hence, applying a 
bioinformatics method might help identify new biomarkers for treating cardiomyopathy. 
This work used microarray data analyses based on gene expression profile (GDS3115) in 
order to explore and identify novel biomarkers. Additionally, it was envisaged that by 
screening the new biomarkers, additional understanding of the molecular underpinnings 
of ICM would be obtained. This might aid in the development of new medicines for ICM 
as well as the selection of a suitable treatment plan. Patients are not [5] receiving treatment 
in a timely manner and there are very few treatment options because to the uncertain 
mechanism behind ICM. Novel biomarkers are therefore important to research and find 
because they can help with ICM/NICM diagnosis and preventive care. 

GEO database provided microarray data for this investigation where DEG associated with 
ICM/NICM were determined. Figure 1 displays the flowchart of this work’s suggested 
design. 
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Figure 1: Proposed Workflow Architecture 

 

In the study, the research methodology involves the application of robust statistical 
algorithms, notably the Robust Multi-Array (RMA) algorithm and interquartile range 
(IQR), to pre-process and eliminate noise from the microarray data, ensuring the reliability 
of subsequent analyses. Hierarchical clustering, specifically using the complete linkage 
method, is utilized to reveal distinct gene expression patterns among different patient 
cohorts, potentially illuminating biomarkers or pathways relevant to different forms of 
cardiomyopathy. Principal component analysis, downstream analysis, and functional 
enrichment analysis were used in investigations of ICM’s underlying mechanism. Future 
research may find it useful to refer to medication predictions associated with gene 
identifications and obtain information required for this study i.e. identifying new 
biomarkers and treatment targets for ICM/NICM. 

Materials and Methods 
 

Data pre-processes: Affy package [4] in R was used to pre-process raw CEL format data 
which included background corrections and normalisations. Limma package [4] in R 
statistically compared gene expression patterns of ICM and control groups. Genes were 
deemed substantially different if its –log10 (p value) >5 and log2FC (fold change) > -1.1 
and < 2. Using pheatmap of R[11],  hierarchical clustering [15, 3] were carried out on 
DEG expression levels based on Euclidean distances. 

 
Proposed Architecture According to the architecture proposed in the Figure 1, the 
workflow began with gene expression profiling and data pre-processing utilizing the 
GDS3115 dataset consisting of 11 samples. This phase encompassed missing value 
imputation, data normalization, log2 transformation, quality assessment, and gene 
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filtering to ensure robustness and reliability in subsequent analyses. The following phase 
is focused on identifying DEG as a critical feature extraction process. A top table was 
generated, resulting in the identification of five DEG, comprising two up-regulated and 
three down-regulated genes, providing initial insight into potential molecular signatures 
associated with the studied cardiovascular conditions. Finally a comprehensive biological 
analysis and interpretation were performed. Principal Component Analysis (PCA) was 
utilized for dimensional reduction and visualization, providing an overview of sample 
relationships. Subsequently, downstream analyses, including Hierarchical Clustering, 
offered insights into potential gene expression patterns and clustering within the dataset. 

 
R Programming: R is a versatile statistical programming language commonly used in 
bioinformatics for analyzing microarray data, offering a rich ecosystem of packages like 
limma and DESeq2 that facilitate differential gene expression analysis and visualization 
through statistical models and graphical representations. 

Python: Python, with libraries such as pandas, NumPy, and scikit-learn, is increasingly 
utilized in transcriptomic analysis for preprocessing microarray data, conducting 
statistical tests, and performing machine learning algorithms, providing a flexible and 
powerful environment for gene expression studies. 

Hierarchical Clustering: Hierarchical clustering, using the complete linkage method, 
organizes genes or samples based on their similarity, forming clusters by considering the 
maximum distance between all possible pairs of elements from two different clusters, 
commonly employed in microarray data analysis to identify distinct expression patterns 
among genes or experimental conditions. 

Robust Multi-Array (RMA) Algorithm: RMA is a robust preprocessing algorithm 
widely applied in microarray data analysis, known for its ability to normalize and 
summarize probe-level intensities, reducing technical variations across arrays, and 
enhancing the accuracy of detecting DEGby improving data quality. 

Interquartile Range (IQR) in Microarray Data Analysis: The IQR, a measure of 
statistical dispersion, is used in microarray data analysis to identify outliers and filter noise 
by calculating the range between the first and third quartiles of expression values, aiding 
in the identification of significantly DEG by minimizing outlier value impacts for 
improved robustness of analyses. 

The integration of R programming facilitated the workflow, allowing for statistical 
analyses and visualization, while Python aided in generating essential visualizations like 
scatter plots and volcano plots. The utilization of multiple analytical tools and 
methodologies provided a holistic understanding of the molecular landscape associated 
with ICM, NICM, and healthy controls. 
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Data Science Process Model 
Using the above concepts data science process model is designed to identify the 
differential expression genes. The data science model of the study is presented in Figure 

2. 

Figure 2: Data Science Process Model 

Objective of the model: The primary objective of this proof-of-concept aimed to uncover 
potential biomarkers and gain insights into the molecular mechanisms underlying using a 
comprehensive data- driven approach. 

Description of Data Collection: The dataset GDS3115, obtained from the GEO 
Repository and originating from human (Homo sapiens) samples, comprises 11 distinct 
samples intended for analysis. These samples were segregated into three patient groups for 
study: 
1. ICM: This subset involved 12 individuals diagnosed with ischemic cardiomyopa-
thy. 
2. Non - Ischemic Cardiomyopathy (NICM): Consisting of 12 individuals diagnosed 
with non- ischemic cardiomyopathy, specifically NYHA III-IV CHF patients. 
3. Control Group: Comprised of 12 age- and gender-matched individuals, this group 
served as controls for comparative analysis. 
This dataset, with its comprehensive analysis of gene expression in PBMCs from 
individuals with heart failure and matched controls, provides valuable insights into the 
molecular mechanisms underlying different forms of cardiomyopathy. It serves as a 
resource for researchers investigating genetic and molecular under pinnings of heart 
failures and potentially contributes to the identification of novel therapeutic targets or 
diagnostic biomarkers for this prevalent cardiovascular condition. 

 
Exploratory Data Analysis (EDA) is the third step in the data science process model as 
represented in Figure 2. It is the statistical approach of analyzing the data. This step plays 
a vital role in understanding of the data and summarizing the data through visuals. The 
graphs and plots provide crisp insights about the data as represented in Figure 3. 

Dimensionality Reduction: At this stage, an analysis of the relationship between 
variables is very essential. The significance of using this step before model building is to 
analyze the relationship between variables, identifies the underlying patterns, and aims at 
reducing the number of dimensions by replacing them with latent variables called factors. 
The output of this step is represented in Figure 7 and 8. 

Objective Data collection Exploratory Data Dimensionality Reduction Model Building 
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Model Building: The Naïve Bayes algorithm and Random Forest is used as a classifier 
to measure the performance of the dataset GDS3115. The Classifiers both used are 
supervised learning technique that can be used for both classification and regression. It is 
considered one of the fastest and most accurate algorithms used in prediction, especially 
for large datasets. The Naïve Bayes algorithm 

technique could be used for multi-class classification (when the response variable is not 
binary and has more than two classes) also. This is based on Bayes Theorem. In the 
machine learning context, a is the response variable and bi are the predictor variables 
representing b1, b2, b3… bn. The Naïve Bayes formula is as follows: 

P
a

b
= P

b

a
∗

P(a)

P(b)
             (1) 

Where : P(a) implies probabilities of response variables, P(bi) represents probabilities of 
predictors, P(a/bi) stands for conditional probabilities of response variables assuimg 
variables for predictors (predictions), P(bi/a) implies conditional probabilities of 
occurrence of predictor variables given response variables (training data). 

 
Future directions for investigation: In the near future, many longitudinal samples will 
need to undergo additional experimental validations of presented results. The expression 
levels of biomarkers identified in this investigation should be assessed in people with ICM 
or in high-risk persons for novel gene treatments and preventions of the illness [33]. 

Statistical Analysis The significant differences between two groups were examined using 
t-test. Corrected P-values were computed using Benjamini and Hochberg approach to 
control error rates.  Statistical significances were defined as an adjusted P-value < 0.05 
[5]. 

Results 
The study initiated by pre-processing and quality-checking the GDS3115 dataset, 
ensuring the reliability and consistency of the data. Subsequently, differential expression 
analysis is done to identify genes that exhibit significant changes in expression levels 
under specific experimental conditions like t-test, Benjamini and Hochberg. The results 
of each phase are represented in the form of visualization as follows. 

Gene Expression Profiling (Data Pre-processing) 
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A. Missing Value 
Imputation 

 

 
B. Histogram for 

Normalized 
Expression Data 

 

 
C. Histogram for after 

Log2 Transformation 

 

 
 

D. Box plot after Log2 
Transformation 

 

 
 

E. Hierarchical 
Clustering 

 

Figure 3: A. Missing Value Imputation B. Histogram for Normalized Expression Data 
C. Histogram for after Log2 Transformation D. Box plot after Log2 Transformation E. 
Hierarchical Clustering for log2 Transformation Data F. Quality Assessment Report 
before and after Normalization using RMA Algorithm. 
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F. Quality Assessment Report 

Gene Filtering 
Filtering Low Variance Probe Sets in Microarray Data Analysis 
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Microarray data analysis often involves preprocessing steps to filter out probe sets with 
low variability across arrays. In this study, filtering step is performed to remove probe sets 
exhibiting low variance, specifically those falling below the 0.25 quantile threshold across 
the entire dataset. Initially, the dataset is comprised a total of 22,283 probe sets. To ensure 
the reliability of subsequent analyses and to focus on probe sets exhibiting substantial 
variability, a filtering criterion based on variance is implemented. Probe sets with variance 
values below the 0.25 quantile threshold were deemed to have low variability and 
consequently removed from the dataset. 
Upon implementing the filtering criterion, the dataset underwent a reduction in the 
number of probe sets. The total number of rows post-filtering amounted to 16,712, 
indicating the removal of 5,571 probe sets with lower variance levels. 

Quantification of Filtering: 
The reduction from 22,283 to 16,712 probe sets equates to a filtering percentage of 
approximately 75%. This quantifies the impact of the filtering process, illustrating that 
approximately three-fourths of the probe sets were eliminated due to their lower variance 
levels falling below the 0.25 quantile threshold. 

Significance of Filtering: 
Filtering out probe sets with low variance is a crucial preprocessing step in microarray 
data analysis. This step helps in streamlining the dataset by focusing on probe sets with 
higher variability, which are often more informative and likely to represent genes or 
genomic regions displaying meaningful differences across experimental conditions or 
samples. 

 
Filtering Probe Sets without Gene Annotation Information in Microarray Analysis 

Accurate gene annotation is crucial in microarray data analysis to ensure the relevance 
and interpretability of results. In this study, a filtering step is performed to eliminate probe 
sets lacking gene annotation information from the dataset. Initially, the dataset consisted 
of 22,283 probe sets derived from microarray data. Recognizing the importance of gene 
annotation for meaningful analysis, filtering process is initiated to exclude probe sets that 
lacked associated gene annotation information. 

Quantification of Filtering: 
The reduction from 22,283 to 15,992 probe sets signifies a filtering percentage of 
approximately 72%. This quantifies the impact of the filtering process, illustrating that 
nearly three-fourths of the probe sets lacking gene annotation information were excluded 
from the dataset. 

Significance of Filtering: 
Filtering out probe sets without gene annotation information is essential to ensure that 
subsequent analyses focus on annotated genes, facilitating meaningful interpretation of 
gene expression data. Genes with proper annotations provide valuable insights into 
biological functions, pathways, and associated molecular mechanisms. 
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Filtering Probe Sets with Multiple Gene Symbols in Microarray Data Analysis 
Accurate gene annotation and assignment of probe sets to specific genes are crucial for 
meaningful interpretation in microarray data analysis. In this study, filtering process is 
initiated to exclude probe sets associated with multiple gene symbols, aiming to ensure 
clarity and specificity in gene identification. Initially, dataset contained 22,283 probe sets 
derived from microarray data. Recognizing the need for precise gene attribution, a 
filtering criterion is implemented to remove probe sets linked to multiple gene symbols, as 
these cases might introduce ambiguity in gene identification. 

Quantification of Filtering: 
The reduction from 22,283 to 9,982 probe sets represents a filtering percentage of 
approximately 45%. This quantifies the impact of the filtering process, demonstrating that 
nearly half of the probe sets linked to multiple gene symbols was eliminated from the 
dataset. 

Significance of Filtering: 
Filtering out probe sets associated with multiple gene symbols enhances the specificity 
and accuracy of gene attribution in microarray data analysis. The removal of ambiguous 
or non-specific gene assignments ensures that downstream analyses focus on probe sets 
uniquely associated with individual genes, thereby improving the reliability of biological 
interpretations. 

 
DEG(Feature Extraction) 

 
Heat maps are used to identify genes which are regulated and associated with particular 
condition [14]. A heat map displaying the differential expression of 250 genes from the 
top table has been generated, employing various statistical measures such as adjusted P-
values, P-values, and F-values. The values ranged from -0.75 to 1.00, with negative values 
indicating down regulated genes, positive values signifying up regulated genes, and the 
magnitude representing the extent of expression changes.The heat map of 250 DEG’s 

from 22283 rows of data are depicted in Figure 4, which illustrates distinct gene 
expression profiles between ICM samples and normal controls [13]. 

Heat map for 250 DEG’s from 22283 rows of data 
 

Figure 4: Heat map illustrating DEG. The color gradient, ranging from yellow to green, 
indicates the gene expression values relative to the ischemic cardiomyopathy group 
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compared to control groups, representing down to up regulations, respectively. 

Distribution of Statistical Significance (-log10(P-Value)) Among Top Genes 
The analyses of differential gene expression often involves the identification of 
statistically significant genes. In this investigation, a top table comprising 250 genes 
extracted from a dataset containing 22,185 rows of data were analysed. The visual 
representation of the distribution of statistical significance using a histogram plot based 
on the negative logarithm of the p-values (-log10(P-Value)) derived from the top table is 
represented in Figure 5. 

 
 
 
 

 
 
 
The histogram depicts a distribution of statistical significance among the top 250 genes. The x-axis 
range from 4 to 16 signifies varying degrees of statistical significance, with higher values 
indicating increased significance. The y-axis illustrates the frequency of genes falling within these 
significance levels. The peak in the histogram between the -log10(P-Value) range of 12 to 13 
indicates a concentration of genes with extremely high statistical significance in the dataset. When 
the value exceeds 13 and reaches towards 16, it indicates that these genes have extremely low p-
values. 
 

This visualization aids in understanding the range and frequency distribution of statistical 
significance levels, contributing to the identification and prioritization of genes with 
higher levels of statistical confidence in the context of differential expression analysis. 

 
1. Likelihood of True Association: The peak in this range suggests that a substantial 

number of genes within the top 250 genes exhibit exceptionally strong evidence 
of differential expression or association with the studied conditions or factors. 
These genes are likely to be highly relevant or crucial in the context of the 

Figure 6: Histogram of fold-change (biological 
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biological phenomena being investigated. 
 

2. Potential Biological Significance: Genes with such high statistical significance 
(represented by -log10(P-Value) in the range of 12 to 13) might indicate important 
regulatory mechanisms, key molecular players, or biomarkers associated with the 
experimental conditions. These genes could potentially serve as targets for further 
functional validation or exploration in subsequent studies due to their robust sta-
tistical support. 

In summary, the peak in the histogram within the 12 to 13 -log10(P-Value) range signifies 
a notable concentration of genes displaying exceptionally strong statistical significance, 
suggesting their potential importance and relevance in the biological context under 
investigation. 

 
Exploring Biological Significance through Fold-Change distribution among top genes 

Biological significance in gene expression analysis is often assessed through fold-change 
values, indicating the magnitude of differential expression between experimental 
conditions. In this analysis, the dataset comprising 22,185 rows were utilized and 
extracted a subset of the top 250 genes based on differential expression. Histogram 
graphic was used to show  distributions of fold-change values amongst these top genes. 
The distributions of fold-change values amongst top 250 genes were shown in histogram 
graphic. The x-axis ranges from -4.0 to -1.5, representing different fold-change intervals, 
while the y-axis illustrates the frequency distribution, spanning increments of 2000 from 
0 to 10000. 

 
This describes the significance of the histogram plot in visualizing distributions of fold-
changes amongst top genes and emphasized the purpose of using fold-change as a measure 
to assess the magnitude of differential gene expression between experimental conditions. 
A higher absolute fold-change value indicates a greater magnitude of differential 
expression between experimental conditions. In this case, the peak in the range of -3.0 to 
-2.5 signifies that a substantial number of genes among the top 250 exhibit moderate to 
moderately high differences in expression levels. These genes are likely to have notable 
biological significance and may serve as potential candidates for further investigation in 
understanding their roles in the studied conditions or biological processes. 
Below describes the histogram plot generated from the fold-change values of the top 250  
genes derived from a dataset of 22,185 rows. 
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Principal Component Analysis 

 

 
 

A. PCA Analysis with outliers 

 

 
 

B. PCA Analysis without 
outliers 

 

 

 

C. PCA Graph of Variables 

 

 

D. Scree plot of PCA 

 
 

 
 
 
E. Percentage of 

variance associated 
with each dimension 
of PCA 

Figure 7: A. PCA Analysis with outliers B. PCA Analysis without outliers C. PCA 
Graph of Variables D. 

Scree plot of PCA E. Percentage of variance associated with each dimension of PCA 
 

Scatter Plot: Positive correlation exists: When the “y” variable tends to increase as the “x” 
variable 
increases, we say there is a positive correlation between the variables. Few outliers are there. 
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Control Pool (CP) 
(scatter plot after imputed PCA) 
* NICM 

 

 
 Control Pool 

(CP) ICM 

 

 

* NICM 
ICM 

* con-
trol pool 
(CP) 
* NICM 

 

Figure 8: Scatter Plot between Control pool, NICM and ICM. 

Results Identification of DEG’s in ICM/NICM samples compared with normal 
controls: Between the ICM, NICM, and control groups, a total of 5 genes with DEG were 
filtered out; 2 of these genes had up-regulated expression and 3 had down-regulated 
expression [14]. Table 1 displays the DEG that were found to have significantly different 
gene expression patterns. Figure 9 plots these DEG using a volcano plot to highlight the 
different gene expression profiles between the ICM sample and the normal controls. 

 
 

S.
No 

 
I
D 

Gen
e 
Sym
bol 

 
Gene 
Title 

Log2
FC 
Valu
e 

-
log10 
(PVal
ue) 

Up/Do
wn 
Regul
ated 
Gene 

1 205898_a
t 

CX3CR1
C 

C-X3-C motif chemokine 
receptor 1 

2.164 5.303 Up 

 
2 

 
200800_s
_at 

HSPA1
L///H 
SPA1B/
//HS 
PA1A 

Heat Shock Protein Family A 
(HSP 70) Member 1 like/// 
Heat Shock Protein Family A 
(HSP 70) Member 1B/// Heat 
Shock Protein Family A (HSP 
70) Member 1A 

 
1.745 

 
5.052 

 
Up 

3 201466_s
_at 

JUN Jun proto-oncogene, AP-1 
transcription factor subunit 

-1.158 5.425 Down 

4 219228_a ZNF331 Zinc finger protein 331 -1.667 5.192 Down 
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t 
5 210426_x

_at 
RORA RAR related orphan receptor 

A 
-1.819 5.582 Down 

Table 1: Identified DEG’s showing significant differences in their gene expression 
profiles 

 

 

 

 
 

Volcano Plot for GDS3115 or GSE9128 
 

 

 

 
 

 

 

 

 

 

 

Figure 9: Volcano plot illustrating the up and down-regulated genes between ICM 
and control pool 

 
Performance measures: Precision, Recall, F-measure, Accuracy and Error have 

been used to evaluate the classifiers in this study. The outline of the confusion matrix is 
revealed in Table 2. 

 
Actual Class 

Prediction Class 

P N 

P TP FN 
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N FP TN 

  

 

True Positive (TP) signifies that the positive samples' diagnoses were accurate. 
False Negative (FN) denotes an inaccurate diagnosis of the positive samples. False 
Positive (FP) denotes erroneous diagnosis of the non-positive samples. True Negative 
(TN) signifies that the non-positive samples diagnoses were accurate. 

 

DATASE
T 

Classifiers 
Precisi

on 
(%) 

Reca
ll 
(%) 

F - 
Measu
re (%) 

Accura
cy 
(%) 

Erro
r 
(%) 

 
 

GDS3115 

Random Forest 87.2 87.2 93.2 87.2 14.8
3 

Naïve Bayes 83.3 85.6 84.4 85.6 15.9
0 

GNN+SVM(Existi
ng) 

82.6
6 

80.0
4 

81.3
5 

84.4
7 

15.5
3 
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TABLE 3 COMPARATIVE PERFORMANCES OF THE PROPOSED 

CLASSIFIERS WITH EXISTING 
METHODS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 10 PRECISION COMPARISON VS. CLASSIFIERS 

Figure 10 shows the precision comparison of classifiers like GNN+SVM, Naive 
Bayes, and Random Forest with respect to gene dataset (GDS3115). Random Forest 
classifier has produces highest precision results of 87.2 and GNN+SVM have lowest 
precision of 82.66% for GDS3115 dataset (Refer Table 3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 11 RECALL COMPARISON VS. CLASSIFIERS 

Figure 11 shows the recall comparison of classifiers like GNN+SVM, Naive 
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Bayes, and Random Forest with respect to gene dataset (GDS3115). Random Forest 
classifier has produces highest recall results of 

 and GNN+SVM has lowest recall of 80.04% for GDS3115 dataset (Refer Table 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 12 F – MEASURE COMPARISON VS. CLASSIFIERS 

Figure 12 shows the F – Measure comparison of classifiers like GNN+SVM, 
Naive Bayes, and Random Forest with respect to gene dataset (GDS3115). Random Forest 
classifier has produces highest F – Measure results of 93.2 and GNN+SVM have lowest 
precision of 81.35% for GDS3115 dataset (Refer Table 3). 
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FIGURE 13 ACCURACY COMPARISON VS. CLASSIFIERS 

Figure 13 shows the accuracy comparison of classifiers like GNN+SVM, Naive 
Bayes, and Random Forest with respect to gene dataset (GDS3115). Random Forest 
classifier has produces highest accuracy results of 87.2 and GNN+SVM have lowest 
accuracy of 84.47% for GDS3115 dataset (Refer Table 3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 14 ERROR COMPARISON VS. CLASSIFIERS 

Figure 13 shows the error comparison of classifiers like GNN+SVM, Naive Bayes, 
and Random Forest with respect to gene dataset (GDS3115). Naive Bayes classifier has 
produces highest error results of 15.9% and Random Forest has lowest error of 14.83% 
for GDS3115 dataset (Refer Table 3). 

 
Conclusion 

"In conclusion, this proof-of-concept-based investigation successfully identified DEG 
that differentiate between patient groups and controls in the GDS3115 dataset, employing 
a rigorous statistical framework and utilizing R programming and Python for differential 
gene expression analysis. The meticulous data-driven approach exemplified in this 
research emphasized systematic analysis methodologies, highlighting the significance of 
identifying several DEGpotentially involved in the pathogenesis of ICM or NICM. The 
exploration of transcriptomic data sheds light on these genes, suggesting their potential 
roles in clinical therapeutic strategies. 

These findings not only provide biological interpretation and functional context but also 
lay the groundwork for future investigations. This groundwork holds promise for 
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discovering novel therapeutic targets and putative biomarkers in various biological 
contexts related to cardiovascular disease research. Ultimately, this study's outcomes pave 
the way for the development of innovative diagnostic or therapeutic approaches based on 
the identified genes associated with ICM/NICM pathogenesis." 
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