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Abstract

We investigate non-autonomous solitons in a general coherently coupled nonlinear Schrödinger (CC-
NLS) system with temporally modulated nonlinearities and with an external harmonic oscillator po-
tential. This general CCNLS system encompasses three distinct types of CCNLS equations that de-
scribe the dynamics of beam propagation in an inhomogeneous Kerr-like nonlinear optical medium
for different choices of nonlinear polarizations owing to the anisotropy of the medium. We identify
a generalized similarity transformation to relate the considered model into the standard integrable
homogeneous coupled nonlinear evolution equations with constant nonlinearities, accompanied by
a constraint relation expressed in the form of the Riccati equation. With the help of a non-standard
Hirota’s bilinearization method and exact soliton solutions, we explore the impact of varying non-
linearities and refractive index in the propagation and collisions analytically by reverse engineering.
Interestingly, we show the emergence of several modulated solitonic phenomena such as periodic os-
cillation, amplification, compression, tunneling/cross-over, excitons, as well as their combined effect
in the single-soliton propagation and two-soliton collisions with appropriate forms of nonlinearity.
Notably, we identify a tool to transform the nature of soliton collisions with certain type of inho-
mogeneous nonlinearities. The results could be of significant interest to the studies on management
of nonlinear waves in the contexts like nonlinear optics and can also be extended to Bose-Einstein
condensates and super-fluids.
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1. Introduction

Nonlinear wave phenomena have a deep physical and mathematical interest as they arise in a

wide landscape ranging from science to engineering and technology such as nonlinear optics, fluid

dynamics, plasma physics, lattice dynamics, and Bose-Einstein condensates (BECs) [1–4]. In non-

linear dynamical systems, introducing inhomogeneous and non-autonomous nonlinearities showcase

distinct dynamical behaviour of nonlinear waves that find applications in optical communication,
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water waves, and Bose-Einstein Condensates (BECs) [5–11]. Along this direction, theoretical and

experimental investigations have been carried out during the past few decades. Recently, the spatially

modulated Kerr nonlinearity is observed experimentally in nonlinear optics [7, 8]. In the context of

BECs, the spatial (or) time modulated nonlinearity is achieved through the Feshbach resonance mech-

anism with a non-uniform magnetic field [12]. Various reports on these types of inhomogeneous and

non-autonomous systems are available in the literature.

Among several types of nonlinear waves, solitons found ever increasing interest due to their re-

markable stability and intriguing collision dynamics. Further, they have multifaceted applications

in almost all areas of science and technology [13]. Solitons emerging from nonlinear Schrödinger

(NLS) type equation with temporally varying/distributed coefficients (dispersion/nonlinearity), so-

called non-autonomous soliton, found important advancements in the context of optical communica-

tion systems. Nowadays, these non-autonomous solitons play an important role in optical fibre system

(see [14–19] and reference therein). In the pioneering works [20, 21], the concept of non-autonomous

soliton was first introduced within the framework of the NLS system with variable dispersion and

nonlinear coefficients and it has been show that the amplitude, widths, velocity and central position

of soliton was completely affected by varying management parameters (dispersion and nonlinearity).

The bright and dark spatial self-similar solitons in graded-index fiber with linear refractive index

have been investigated [22]. In ref. [23, 24], authors have studied the dynamics of bright soliton in a

dispersion managed erbium doped inhomogeneous fibre with gain/loss. Especially, the existence of

bright-dark dispersion managed soliton with randomly varying birefringence has been investigated

[25]. The dynamics of spatio-temporal light bullets in three-dimensional nonlocal NLS system with

variable coefficients have also been studied [26] and it shows that intensity, width, phase and the chirp

of light bullets are strongly modified by dispersion and nonlinearity coefficients. Specifically, the

spatio-temporal multi-soliton solutions with and without continuous wave backgrounds in the NLS

equation with variable dispersion and nonlinearity coefficients have been obtained in [27]. Moreover,

the snake-like nonautonomous solitons in planar grating waveguides have been investigated [28, 29]

and reported the control of the shape preserved soliton’s motion on the graded-index waveguides. Re-

cently, the shape of the dissipative dispersion-managed solitons in optical fiber systems with lumped

amplification have been studied both experimentally and numerically [30]. Apart from the solitons,

analysis on the exact periodic traveling wave and soliton pair (bright-dark and dark-dark) solutions of

the coupled NLS equations with harmonic potential and variable coefficients has been reported [31].

The effects of the periodically modulated nonlinearity on the soliton propagation and interaction in

a dispersion-managed birefringence system is also of much importance [32–34]. Analytical vector

non-autonomous soliton solutions for the coupled NLS with spatially modulated coefficients and co-

herent coupling were studied [35]. Particularly, the phase dynamics of bright and dark solitons in

variable coefficient coupled NLS equation was reported [36]. More recently, the evolution and stabil-

ity of bright vector soliton in coupled Ginzburg-Landau equation with variable coefficients has been

studied [37]. This clearly indicates that study of non-autonomous solitons is of much importance not

only in one dimensional NLS type systems but also in higher dimension and dissipative nonlinear

systems as well as multi-component optical systems such as multi-mode fibers.
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Based on the above interesting works, in this work, we give a detailed analysis of soliton man-

agement in a general coupled NLS type system with variable Kerr nonlinearity and linear parabolic

refractive index profile arising in the context of polarized light beam propagation in low birefringent

nonlinear optical media. Here the relative phase factors of the co-propagating electric fields lead to the

onset of fourwave mixing effects. This coupling arises naturally in weakly anisotropic or birefringent

media. The following system of coherently coupled nonlinear Schrödinger (CCNLS) equations (in

dimensionless form) [1, 38] describes such type of beam propagation in Kerr-like nonlinear medium:

i
∂A1

∂z
+

(
δ
∂2

∂x2 + υ(x, z)
)

A1 + γ(z)[σ11|A1|
2 + σ12|A2|

2]A1 − δ1γ(z)A2
2A∗1 = 0, (1a)

i
∂A2

∂z
+

(
δ
∂2

∂x2 + υ(x, z)
)

A2 + γ(z)[σ21|A1|
2 + σ22|A2|

2]A2 − δ2γ(z)A2
1A∗2 = 0, (1b)

where A j ( j = 1, 2) are the slowly varying envelopes of the electric fields associated with two or-

thogonally polarized components. In Eq. (1), x and z are the transverse and longitudinal coordinates,

respectively, while the asterisk (∗) denotes the complex conjugation and δ represents the group veloc-

ity dispersion coefficient [39]. Further, γ(z) is the variable nonlinear parameter, the z-dependence of

which stems from the inhomogeneity of the optical medium [5, 7] and υ(x, z) is the graded refractive

index profile in the form [40]. Eq. (1) contains phase-independent incoherent nonlinearities given

by σi j, i, j = 1, 2, where σ11 and σ22 represent the strengths of self-phase modulation (SPM), while

σ12 and σ21 denote the strengths of cross-phase modulation (XPM). Additionally, the four-wave mix-

ing (FWM) nonlinearity strength is represented by the coefficients δ1 and δ2 of the phase-dependent

coherent coupling. Here one can have a different consideration with varying dispersion effect or dis-

persion management δ(z) as well as spatio-temporal modulated nonlinearities γ(x, z) in the CCNLS

system (1), which deserve a separate intensive investigation and shall be reported shortly. For a spe-

cial set of parameters (σ12 = σ21 = δ j = 0) along with constant nonlinearities and in the absence

of graded refractive index, the system (1) reduces to the standard scalar NLS equation for the two

separate modes A1 and A2, namely iA j,t + δA j,xx + γ|A j|
2A j = 0, j = 1, 2, whose various nonlinear

wave solutions including solitons, breathers, rogue waves, periodic waves under different physical

situations have been extensively studied. Further, when the FWM nonlinearity is absent, the soliton

dynamics for focusing and mixed type nonlinear Schrödinger modles were investigated with explicit

soliton solutions and asymptotic analysis exploring the energy-sharing and elastic collisions of bright

solitons [41–45].

Moreover, it is important to mention that Eq. (1) is a general version of inhomogeneous CCNLS

system. Interestingly, it results into six different models for appropriate choices of dispersion and

nonlinearity coefficients. The inhomogeneous model (1) with constant nonlinearities and refractive

index describes beam propagation in uniform/homogeneous Kerr-like nonlinear medium reads as

i
∂A1

∂z
+ δ

∂2A1

∂x2 + γ
(
σ11|A1|

2 + σ12|A2|
2
)

A1 − δ1γA2
2A∗1 = 0, (2a)

i
∂A2

∂z
+ δ

∂2A2

∂x2 + γ
(
σ21|A1|

2 + σ22|A2|
2
)

A2 − δ2γA2
1A∗2 = 0. (2b)
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The above Eq. (2) is non-integrable in general and shall pass the integrability test only for certain

choices of coefficients [46]. As mentioned earlier, the above generalized two-component CCNLS

equation shall take different versions for various choices of nonlinearity and dispersion coefficients,

as given below.

Model (i) [47]: δ = −1, σ11 = σ22 = −1, σ12 = σ21 = −2, δ1 = δ2 = 1, (3)

Model (ii) [48]: δ = 1, σ11 = σ22 = 1, σ12 = σ21 = 2, δ1 = δ2 = 1, (4)

Model (iii) [50]: δ = −1, σ11 = σ22 = −1, σ12 = σ21 = −2, δ1 = δ2 = −1, (5)

Model (iv) [49]: δ = 1, σ11 = −σ22 = 1, σ12 = −σ21 = −2, δ1 = −δ2 = 1, (6)

Model (v) [51]: δ = 1, σ11 = σ22 = −1, σ12 = σ21 = −2, δ1 = δ2 = 1, (7)

Model (vi) [51]: δ = 1, σ11 = σ22 = 1, σ12 = σ21 = 2, δ1 = δ2 = −1. (8)

Among the above six versions, models (v) and (vi) correspond to the choices (7) and (8) are equiv-

alent to (3) when x → ix and z → −z, respectively, while the model (iii) arising for the choice

(5) can be reduced to model (ii) resulting for (4) when z → −z. Further, based on the impact of

nonlinearities, models resulting for the choices (3), (7) and (8) shall be defined as CCNLS systems

with positive coherent coupling, while that of the choices (4) and (5) are as CCNLS systems with

negative coherent coupling, and the choice (6) is designated to the CCNLS system with mixed type

nonlinearities. Thus, effectively there exist only three distinct models (3), (4), and (6) representing

the coherent propagation of two orthogonally polarized modes featuring different SPM, XPM, and

four-wave mixing nonlinearities. The exact bright soliton solutions of these models (3), (4), and

(6) were constructed by employing a non-standard way of Hirota’s bilinearization method in Refs.

[47], [48], and [49], respectively, along with a detailed study on the propagation and collision dy-

namics of these solitons. Particularly, the solitons were classified as coherently coupled solitons and

incoherently coupled solitons based on the presence and absence of the phase-dependent (four-wave

mixing) nonlinearity, respectively, exhibiting single-hump, double-hump and flat-top profiles. Fur-

ther, an interesting energy-switching collision of bright coherent-incoherent solitons was investigated

in addition to their energy-sharing and elastic collisions [47–49].

On the other hand, equations similar to (3-8) can also arise in the context of BECs governing the

dynamics of spinor condensates when the spin-mixing nonlinearity plays a crucial role. For example,

soliton solutions and their interactions of an autonomous and non-autonomous spin-1 condensate

system usually referred as three-coupled Gross-Pitaevskii equations were obtained in Refs. [52–

57] and have been classified as interesting ferromagenetic and polar solitons, based on the effect of

spin-mixing nonlinearity. This three-component system reduces to the two-component CCNLS type

system when we consider pseudo-spinors and is referred as degenerate CCNLS system [51]. A variant

degenerate coherently coupled spin system similar to Eq. (7-8) has been discussed in autonomous

and non-autonomous settings [51]. The study unraveled various coherent structures through linear

superposition and by varying nonlinearities and external potential.

Motivated by the propagation and collision dynamics of solitons in homogeneous optical media

[47–49] as well as the investigation of non-autonomous solitons in BECs [57], in this work, we fo-
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cus our investigation on the generalized CCNLS system (1) with varying nonlinearity and refractive

index profile. The objectives are to construct exact soliton solutions with inhomogeneity and vary-

ing nonlinearity coefficients, which can be implemented through an appropriate similarity or lens

type transformation. Further, the propagation as well as collision dynamics of such inhomogeneous

solitons will be studied extensively with appropriate analysis and graphical demonstrations.

The remaining part of this work is arranged in the following manner: The conversion of inho-

mogeneous 2-CCNLS system (1) into a homogeneous version (2) with a similarity transformation is

given in Sec. 2. along with the importance of considered varying nonlinearities. Section 3 consists

of the propagation dynamics of inhomogeneous solitons which enacts the manipulation mechanism

of optical solitons through nonlinear optical fibers/communication systems. Further, various types

of inhomogeneous soliton collisions are presented in Sec. 4 with categorical analysis. Further, the

possibility and occurrence of inhomogeneous soliton bound states are discussed in Sec. 5. The final

section 6 is devoted to summarize the important results along with certain future perspectives.

2. Transformation to the Integrable Homogeneous CCNLS Model

Solving inhomogeneous nonlinear models is comparatively difficult, but quite possible, than that

of their homogeneous (constant parameter) counterparts. However, we require explicit solutions for

a complete understanding of the considered system. This can be accomplished by two broad routes:

directly solving the equations by retaining the variable coefficients and transforming the equation into

a convenient model that can be exactly solved with various analytical methods.

In this section, we adopt the second route by implementing a similarity transformation to extract

explicit solutions for Eq. (1). For this purpose, we apply the following similarity transformation to

Eq. (1):

A j(x, z) = ρ(z) Q j(X(x, z),Z(z)) exp[iζ(x, z)], j = 1, 2. (9)

where ρ(z) is the amplitude, while ζ(x, z) is the phase and X(x, z) and Z(z) are the similarity variables,

the explicit form of all these variables has to be determined. The above transformation (9) reduces

Eq. (1) into the following homogeneous CCNLS equation:

iQ1,Z + δQ1,XX + (σ11|Q1|
2 + σ12|Q2|

2)Q1 − δ1Q2
2Q∗1 = 0, (10a)

iQ2,Z + δQ2,XX + (σ21|Q1|
2 + σ22|Q2|

2)Q2 − δ2Q2
1Q∗2 = 0. (10b)

The only difference between Eqs. (2) and (10) is that the constant nonlinearity coefficient γ takes a

fixed value of γ = 1 in the latter, while it stays arbitrary in the former. To determine the unknown

functions of (9), we substitute it into (1) from which we obtain a set of partial differential equations

(PDEs) for these unknown functions as given below.

Xxx = 0, Xz + 2δXxζx = 0, δζ2
x + ζz −

1
2

F(z)x2 = 0, (11a)

Zz − ρ
2(z)γ(z) = 0, ρz + δρ(z)ζxx = 0, X2

x − ρ
2(z)γ(z) = 0. (11b)
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Solving the above PDEs successively, we find the following expressions with auxiliary real arbitrary

constants ε1 and ε2:

ζ(x, z) = −
1
4δ

d
dz

(ln γ)x2 + ε2
1ε2γx − δε2

2ε
4
1

∫
γ2dz, (12a)

X(x, z) = ε1

(
γx − 2δε2ε

2
1

∫
γ2dz

)
, (12b)

Z(z) = ε2
1

∫
γ2dz, (12c)

ρ(z) = ε1

√
γ(z), (12d)

F(z) =
1
δ

(
γ2

z

γ2 −
γzz

2γ

)
. (12e)

Note that the external potential and nonlinearity shall not be independent, either one can be arbitrary

function of z, while the other admits suitable form through Eq. (12e). This condition can also be

rewritten in a more convenient form of Riccati equation Yz − Y2 + δF(z) = 0, where Y = γz/γ. Now,

with the identified explicit similarity transformation (9) and corresponding variables (12), one can

easily construct exact nonlinear wave solutions of inhomogeneous model (1) when we are able to

provide the respective solutions for constant parameter CCNLS equation (10).

The above mentioned similarity transformation and the varying nonlinearities can be adopted for

any inhomogeneous nonlinear systems, in the present case for all versions of the CCNLS models.

Hereafter, we explore their impact in the propagation and collision dynamics of bright solitons of

these CCNLS systems by constructing their explicit solutions obtained by using a non-standard type

of Hirota’s bilinearization method. We refrain from presenting the detailed procedure here and one

can refer to [47–49] for the systematic construction as well as the analysis on homogeneous solitons.

Especially, we consider the three distinct versions (3), (4), and (6) one by one.

3. Inhomogeneous bright one-soliton

In order to achieve the first objective, understanding the role of varying nonlinearities on soliton

propagation, we construct explicit soliton solutions by adopting the Hirota’s bilinearization method

with an auxiliary function to homogeneous form (2) [47–49] and deduce solutions of the inhomoge-

neous equations (1) under investigation, using (9). First of all, the bilinearizing transformation and

generalized bilinear forms of CCNLS equation (2) can be written as,

Bilinear transformation⇒ Q1 =
G
F
, Q2 =

H
F
, (13a)

Bilinear equations ⇒ (iDZ + δD2
X)G · F = δS G∗, (13b)

(iDZ + δD2
X)H · F = δ2S H∗, (13c)

δD2
XF · F = 2(|G|2 + δ2|H|2), (13d)

S · F = G2 + δH2, (13e)
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where G, H and S are complex functions, while F is a real function and D represents the standard

Hirota derivative [58] of the respective independent variables Z and X. The above bilinear forms are

applicable to the general CCNLS model (1) which includes all versions given by (3-8) for respective

choices. When we apply the bilinearizing transformation (13a) to the three distinct versions of CC-

NLS models (3), (4) and (6), we shall get three different sets of bilinear forms. By combing those

three forms, we have written in the above form (13) in a conenient way. By following the standard

procedure, we can construct soliton solutions after expanding the dependent functions as power series

and then by recursively solving the resultant ordinary differential equations arising at different orders

of expansion parameters [47–49].

The generalized bright one-soliton solution of the inhomogeneous CCNLS system (1), especially,

to the three distinct CCNLS Eqs. (3), (4), and (6), can be obtained as

A j(x, z) =
ε1
√
γ
(
α

( j)
1 eη1 + e2η1+η∗1+δ

( j)
11

)
1 + +eη1+η∗1+R1 + eη1+η∗1+ε

( j)
11

eiζ(x,z), j = 1, 2, (14a)

where

eδ
(1)
11 =

α
( j)∗
1 S 1

2(k1 + k∗1)2 , e
δ(2)

11 =
δδ2α

(2)∗
1 S 1

2(k1 + k∗1)2 , e
R1 =

|α(1)
1 |

2 + δ2|α
(2)
1 |

2

(k1 + k∗1)2 , eε11 =
|S 1|

2

(k1 + k∗1)4 , (14b)

η1 = k1(X + iδk1Z), X = ε1

(
γx − 2δε2ε

2
1

∫
γ2dz

)
, Z = ε2

1

∫
γ2dz. (14c)

The above soliton solution is obtained with an auxiliary function S = S 1e2η1 , which plays an im-

portant role in the classification of the respective solitons as coherently- and incoherently-coupled

solitons, and it takes the form

S 1 = (α(1)
1 )2 + δ(α(2)

1 )2. (14d)

The above solution is applicable to all the three inhomogeneous CCNLS models (1) corresponding

to (3), (4), and (6) with appropriate choices of dispersion (δ), incoherent nonlinearities (σi j), and

coherent nonlinearity (δ j).

3.1. Inhomogeneous Incoherently Coupled Solitons

From the above general one-soliton solution (14), one can easily understand that the choice S 1 = 0

leads to eδ
(1)
11 and eε11 vanish. This results into a simple form corresponding to that of Manakov type

solitons without the contribution from coherent nonlinearity, which can be designated as inhomoge-

neous incoherently coupled solitons (IICSs). Such type of inhomogeneous soliton can be casted in a

standard hyperbolic form as

A j(x, z) = B j sech(η1R + R1/2)ei(ζ+η1I ), j = 1, 2, (15)

where B j = 1
2α

( j)
1 ε1

√
γ(z)e−R1/2, η1R = k1R(X−2δk1IZ), η1I = k1IX+δ(k2

1I−k2
1R)Z, and other parameters

ζ, X and Z are as given in Eq. (14). This IICS admits well-known bell-type/symmetric-single-hump
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profile with certain amplitude B j, width (proportional to inverse of amplitude), and velocity 2δk1I of

propagation represented by the above form. Here we should note that the above IICS is possible for

the models (3) and (4), while it results in singular solutions in system (6) as the restriction S = 0

makes the denominator of general solution to vanish.

3.2. Inhomogeneous Coherently Coupled Solitons

In addition to the above special/restricted IICS (15), the general bright one-soliton solution (14)

usually contains the contribution from both coherent and incoherent nonlinearities (S 1 , 0), which

can be referred as inhomogeneous coherently coupled solitons (ICCSs). We can rewrite the solution

(14) in a convenient form as below.

A j(x, z) = C j

(
cos(P j) cosh (Q) + i sin(P j) sinh(Q)

4cosh2(Q) + L

)
ei(ζ+η1I ), j = 1, 2, (16)

where C j = 2ε1
√
γ e

l j+δ
( j)
11−ε11
2 , P j = e

δ
( j)
11I−l jI

2 , l j = ln(α( j)
1 ), Q = η1R + ε11

4 , L = e(R1−
ε11
2 ) − 2, η1R =

k1R(X − 2δk1IZ), η1I = k1IX + δ(k2
1R − k2

1I). Here X and Z are nonlinearity dependent coordinates as

given in Eq. (14). When we analyze the above form, it is clear that ICCSs admit different profiles

ranging from double-hump and flat-top structures including an asymmetric single-hump as well (but

not in exact sech form) for P j , 0 which is possible only for S 1 , 0.

Here we should emphasis in both solutions (15) and (16) the amplitude of solitons B j and C j

in j-th mode respectively are strongly influenced by the varying nonlinearity γ(z). Additionally, the

velocity, position and phase of these solitons are also altered by nonlinearity γ(z), which are not at all

possible in homogeneous solitons where they depend only on the wave vectors k1. So, by properly

choosing the arbitrary nonlinearity parameter, one can engineer the resultant solitons, so that they

can be utilized for a wider range of applications. Here, we concentrate on some simple soliton

management mechanisms such as amplification, compression, oscillation, and tunneling of solitons

with appropriate forms of nonlinearities.

3.3. Nature and Impact of Nonlinearities

As mentioned below Eq. (12), the nonlinearity γ(z) and varying refractive index profile F(z) (ul-

timately v(x, z)) are mutually dependent. So, throughout our study, we consider a set of interesting

nonlinearity functions and explain how they play crucial role in the evolution of solitons in the con-

sidered system. Here, we choose the following forms of nonlinearity function as Jacobian elliptic

type function (correspond to soliton lattices) and exponential type:

γ(z) = γ0 + γ1 sn(z,m), 0 < m < 1, (17a)

γ(z) = γ0 + γ1 cn(z,m), 0 < m < 1, (17b)

γ(z) = γ0 + γ1 exp(γ2z), (17c)

where γ0, γ1, and γ2 are arbitrary real constants. From the above nonlinearities, one can obtain

explicit form of F(z) from Eq. (12e) which show the nature of varying refractive index profile v =

8



Fx2/2. We portray the variation of these nonlinearities γ(z) and potential function F(z) with respect to

‘z’ in Fig. 1. Especially, for different values of elliptic modulus parameter m in the nonlinearities, they

smoothly transfer from a periodic profiles (for m = 0) to a step-like and localized-hump structures(for

m = 1) in turn alters the refractive index profile too as depicted in the right panel of Fig. 1. Such

smooth function of nonlinearities are reasonable candidates for experimental implementation [59].

Figure 1: Nature of nonlinearity parameter γ(z) and F(z) for different choices. (i) tanh: m = 1 in (17a), (ii) sin: m = 0 in
(17a), (iii) sech: m = 1 in (17b), (iv) cos: m = 0 in (17b), and (v) exp: γ2 = 0.12 in (17c) with other values as γ0 = 2.0
and γ1 = 1.05.

By adopting the above types of nonlinearities (17), we investigate the evolution of inhomogeneous

solitons given by Eqs. (15) and (16) in the following part.

3.3.1. Creeping or snake-like soliton: Periodic nonlinearity

Among the considered nonlinearity functions (17), first two forms when m = 0 leads to the trigono-

metric type periodic functions namely γ(z) = γ0 + γ1sin(z) and γ(z) = γ0 + γ1cos(z). Mathematically,

their implication with respect to z is well known, which is nothing but a periodically oscillating dy-

namics with a phase-shift between them. In the present system, they affect the nature of soliton prop-

agation such as the amplitude, velocity, and position which become functions of γ(z) as evidenced

from the explicit solutions (15) and (16). We have shown such traveling soliton in Figs. 2 and 3,

where one can witness the periodically modulated/oscillating amplitude as well as direction/velocity.

To be explicit the variation in the amplitude of IICSs can be represented as B j = 1
2α

( j)
1 ε1

√
γ(z)e−R1/2,

while that of ICCSs is defined by C j = 2ε1
√
γ exp

(
(l j + δ

( j)
11 − ε11)/2

)
, with other parameters as

shown below Eqs. (15-16), which clearly depicts the significance of nonlinearity parameter γ in am-

plitude. Further, the central position as well as the velocity of IICSs and ICCSs are described by

k1Rε1

[
γx − 2δε1(ε1ε2 + k1I)

∫
γ2dz

]
+ R1/2 and k1Rε1

[
γx − 2δε1(ε1ε2 + k1I)

∫
γ2dz

]
+ ε11

4 , respectively.

Here the periodic nonlinearity makes the propagation of these localized IICSs/ICCSs resembles the

snake-like pattern and it can also be referred as creeping soliton. Figure 2 depicts the modulation of

IICSs admitting single-hump profile with ‘sine’ and ‘cosine’ type nonlinearities. They have equal-

intensity/energy in both components and the main difference between these two nonlinearities is only

the well-known phase-shift which can be identified from the substantial shift along ’z’. Another sig-

nificant feature is that these can be manipulated with the available arbitrary parameters γ0 and γ1. By

increasing the values of γ1 we can control the “creeping” nature which enhances beating (oscillations)
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γ = γ0 + γ1sn(z, 1) γ = γ0 + γ1cn(z, 1)

Figure 2: Propagation of single-hump IICSs with periodically oscillating intensity and position/velocity with ‘sine’ and
‘cosine’ type nonlinearities resulting for m = 0. Both are symmetric to each other except a small shift along ’z’. Here the
parameters are chosen as δ = 1, ε1 = 0.5, and ε2 = 0.12, γ0 = 2.0, γ1 = 1.05, k1 = 1 + 0.5i, α(1)

1 = 1.5, and α(2)
1 = 1.5i.

Figure 3: Propagation of double-hump and flat-top ICCSs with periodically oscillating intensity and position/velocity
with varying nonlinearity γ = γ0 + γ1sn(z, 0) for α(2)

1 = 2.1i, while the other parameters as same as in Fig. 2.

effects in the intensity. Further, we have shown the nature of ICCSs (16) having double-hump and

flat-top structures in A1 and A2 components, respectively, in Fig. 3 for ‘sine’ nonlinearity. A similar

dynamics can be observed for ‘cosine’ nonlinearity as well which are not shown here.

3.3.2. Soliton Amplification and Compression: Kink-like nonlinearity

The elliptic function nonlinearity becomes a pure hyperbolic one when m = 1, especially (17a) turns

out to be γ = γ0 + γ1 tanh(z), and this influences a smooth transition of soliton identities similar to

that of a step-function. Soliton dynamics under such ‘tanh’ nonlinearity is shown in Figs. 4 and 5.

Unlike in the previous case of periodic nonlinearities, here the amplitude, velocity, position and width

of the solitons are get modulated as a smooth step-like change. To be precise, the intensity of soliton

gets amplified with commensurate compression in its width (when γ1 > 0) so that the total energy
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Figure 4: Controlled amplification and suppression of the intensity associated with pulse compression and widening of
single-hump IICSs soliton for γ = γ0 + γ1tanh(z) with γ1 = 1.05 and γ1 = −1.05, respectively, while the other parameters
are δ = 1, ε1 = 0.5, ε2 = 0.12, γ0 = 2.0, k1 = 1 + 0.5i, α(1)

1 = 1.5, and α(2)
1 = 1.5i.

is conserved during propagation. In contrast when γ1 < 0, the soliton under modulation becomes

broader with a suppression/decrease in its intensity. Further, the velocity of the soliton decreases

(becomes slower) in the former while it travels faster (increases) in the latter, which consequently

changes the actual position of the soliton at any given time. In one way, this clearly indicates the

amplitude-independent velocity of solitons in the present system. For a better understanding, we have

demonstrated such compressed-amplification and widened-suppression of IICSs in Fig. 4, where they

admit a standard single-hump profile. In the first case with γ1 > 0, the wider soliton having small

amplitude (at z = −20) gets compressed and undergo significant enhancement in its amplitude (see

at z = 20). The reverse scenario occurs in the second case with γ1 < 0. Here the shorter/wider

soliton travels faster while the taller/narrow soliton propagates slower. To be precise, the kink-like

nonlinearity γ(z) influences a significant increase in the soliton intensity combined with compression.

The nature of modulation in ICCSs under the kink nonlinearity is depicted in Fig. 5 which clearly

reveals the compressed-amplification of the solitons having double-hump and flat-top profiles with

considerable change/reduction in its velocity that forces them to travel slower after the intensity

growth. Such phenomenon can be utilized in soliton pulse-shaping dynamics.

3.3.3. Soliton Tunneling and Cross-over effects: Bell nonlinearity

Next, we address an interesting concept of soliton tunneling. For this purpose, we consider a non-

linearity of the form (17b) with m = 1, which leads to a ‘sech’ function of ‘z’ and in explicit form

it can be written as γ = γ0 + γ1sech(z). This ‘sech’ type nonlinearity creates a localized structure

which acts as a barrier. In the present ICCNLS system (10), it gives rise to tunneling of solitons

through the barrier as shown in Figs. 6 and 7. Here the parameter γ1 enables the formation of bar-

rier in two categories, one with localized intensity peak (bell type for γ1 > 0) while the other with

intensity dip (inverted bell type for γ1 < 0), where the former can be referred as tunneling and the

latter as cross-over. An important point to note that is the soliton identities such as amplitude, width
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Figure 5: Controlled amplification of the intensity associated with pulse compression of double-hump and flat-top ICCSs
with γ = γ0 + γ1tanh(z) for the same choice of parameters given in Fig. 4 except for α(2)

1 = 2.1i.

and velocity are preserved before and after tunneling. However, there occurs only a small phase-shift

due to the tunneling dynamics. Further, when analyze the total energy of the traveling solitons, there

occurs compression during the tunneling and widening during cross-over in the barrier regime, see

Fig. 6. If we notice the figures clearly, there is no change in the amplitude and width of the soli-

ton until it reaches the barrier and after a short-living compression/widening in the barrier regime,

they reemerge with initial characteristics only with a phase-shift. For a complete understanding,

we have also demonstrated the ICCSs exhibiting M-shape (double-hump) and flat-top structures for

nonlinearity of the form γ = γ0 +γ1sech(z) in Fig. 7, there itself one can witness the identity preserv-

ing tunneling propagation. Such type of tunneling mechanism is looking analogous to the quantum

tunneling effect with shape-preservation propagation nature beyond the barrier and they are also re-

ferred to soliton spectral tunneling (SST) in the literature [60]. Such type of tunneling effect appear

in a wider context of science including matter wave tunneling in BECs, optical similariton tunnel-

ing in photonic crystal fibers, tunneling of self similar optical rogue waves, etc. with an external

harmonic potential in both scalar and multicomponent nonlinear systems, see [36, 61–63] and refer-

ences therein. These prescribe the possibility for observing phenomenon of tunneling experimentally

with localized compression. Another interesting observation is the appearance of a rogue-wave-like

localized excitations with infinitely long tails when γ0 approaches zero, see Fig. 8. This phenomenon

can be understood in such a way that the solitons vanish along z and emerge/switch as long-lasting

tails along x.

3.3.4. Exponentially growing soliton

In addition to the elliptic function nonlinearities, a classical exponential function also controls the dy-

namics of soliton propagation in a straightforward rather significant way. Such type of nonlinearities

enable the controllable ever-increasing energy of the associated waves. In our case, a simple exponen-

tial nonlinearity given by (17c) increases the intensity of the solitons which is well substantiated with
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Figure 6: Soliton tunneling and cross-over accompanied by phase-shift through the barrier given by the varying non-
linearity γ = γ0 + γ1sech(z) for γ1 = 1.05 and γ1 = −1.05, respectively, with δ = 1, ε1 = 0.5, ε2 = 0.12, γ0 = 1.0,
k1 = 1 + 0.5i, α(1)

1 = 1.5, and α(2)
1 = 1.5i.

Figure 7: Tunneling of double-hump, and flat-top solitons for δ = 1, ε1 = 0.5, ε2 = 0.12, γ = 1.0 + 1.05 sech(z),
k1 = 1 + 0.5i, α(1)

1 = 1.5, and α(2)
1 = 2.1i. Solitons exhibit significant change in their phases after tunneling through the

barrier.

Figure 8: Localized excitation of IICS (single-hump) and ICCSs (double-hump and flat-top solitons) at the barrier for the
same type of nonlinearity and arbitrary parameters given in Fig. 7, except for γ0 = 0.0.
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(a) (b) (c)

Figure 9: Exponential growth of (a) single-hump IICS and (b-c) ICCSs having double-hump and flat-top profiles
associated with compression for exponential (top panel) γ = γ0 + γ1exp(γ2z) and combined (bottom panel) γ =

γ0sechz + γ1exp(γ2z) nonlinearities. The choice of parameters are k1 = 1 + 0.5i, α(1)
1 = 1.5, with α(2)

1 = 1.5i for
IICS and α(2)

1 = 2.1i for ICCS. The other parameters are δ = 1, ε1 = 0.5, ε2 = 0.2, γ0 = 2.0, γ1 = 1.05, and γ2 = 0.12.

compression. For completeness, we have sown such modulation in Fig. 9 for γ = γ0 + γ1exp(γ2z).

Further, in the presence of superposed nonlinearities with exponential and sech functions, namely

γ = γ0sechz + γ1exp(γ2z), one can understand the soliton growth as well as tunneling dynamics,

which we have also depicted in Fig. 9. Additionally, we can observe a strange behaviour of soliton

generation from nowhere (for example before z < −15) and the intensity picking up when it ap-

proaches the barrier and increase exponentially thereafter. Another striking feature is that the width

of the solitons are greatly affected by this combined nonlinearity function. A wider (single-hump or

double-hump or flat-top) soliton is getting localized when it reaches the barrier and cross-over it, then

grow with a very narrow width.

Here, we wish to remark the integrability and stability of our considered general inhomogeneous

model (1). From the obtained similarity transformation (9), equation (1) is turned to become condi-

tionally integrable in the form of equation (10) via Riccati equation (12e). As these inhomogeneous

equations are integrable, their solutions also stable. To ensure this, one can follow the stability anal-

ysis as presented in Refs. [64,65] which demonstrated how one can identify whether a given solution

is stable or unstable on satisfying the conjectured criterion dP/dv > 0 and dP/dv > 0, respectively,

where P is the normalized momentum and v is the normalized velocity. Proceeding along this direc-

tion, we found that the obtained solution fulfils the condition for stability dP/dv > 0 and becomes

stable.
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4. Inhomogeneous Two-soliton Solution and their Collisions

Being motivated by the effects of inhomogeneous nonlinearities in the one-soliton propagation,

here we proceed further to explore their significance in all possible bright soliton collisions of general

system (1). For this purpose, first we wish to construct explicit two-soliton solution by following the

standard algorithm of Hirota method [58] and by using the bilinear form (13) as well as the similarity

transformation (9). The bright inhomogeneous two-soliton solution of the general CCNLS system

(1) is obtained as

A j(x, z) = ε1
√
γ

G( j)

F
eiζ(x,z) ⇒ ε1

√
γ

G( j)
1 + G( j)

3 + G( j)
5 + G( j)

7

1 + F2 + F4 + F6 + F8
eiζ(x,z), j = 1, 2, (18a)

where the explicit expression of dependent functions G(1) = G, G(2) = H, and F takes the following

form:

G( j)
1 = α

( j)
1 eη1 + α

( j)
2 eη2 , (18b)

G( j)
3 = e2η1+η∗1+δ

( j)
11 + e2η1+η∗2+δ

( j)
12 + e2η2+η∗1+δ

( j)
21 + e2η2+η∗2+δ

( j)
22

+eη1+η∗1+η2+δ
( j)
1 + eη2+η∗2+η1+δ

( j)
2 , (18c)

G( j)
5 = e2η1+2η∗1+η2+µ

( j)
11 + e2η1+2η∗2+η2+µ

( j)
12 + e2η2+2η∗1+η1+µ

( j)
21 + e2η2+2η∗2+η1+µ

( j)
22

+e2η1+η∗1+η2+η∗2+µ
( j)
1 + e2η2+η∗2+η1+η∗1+µ

( j)
2 , (18d)

G( j)
7 = e2η1+2η∗1+2η2+η∗2+φ

( j)
1 + e2η1+2η2+2η∗2+η∗1+φ

( j)
2 , (18e)

F2 = eη1+η∗1+R1 + eη1+η∗2+δ0 + eη2+η∗1+δ∗0 + eη2+η∗2+R2 , (18f)

F4 = e2η1+2η∗1+ε11 + e2η1+2η∗2+ε12 + e2η2+2η∗1+ε21 + e2η2+2η∗2+ε22 + e2η1+η∗1+η∗2+τ1

+e2η∗1+η1+η2+τ∗1 + e2η2+η∗1+η∗2+τ2 + e2η∗2+η1+η2+τ∗2 + eη1+η∗1+η2+η∗2+R3 , (18g)

F6 = e2η1+2η∗1+η2+η∗2+θ11 + e2η1+2η∗2+η2+η∗1+θ12 + e2η2+2η∗1+η1+η∗2+θ21

+e2η2+2η∗2+η1+η∗1+θ22 , (18h)

F8 = e2(η1+η∗1+η2+η∗2)+R4 . (18i)

Here η j = k j(X + iδk jZ), X = ε1

(
γx − 2δε2ε

2
1

∫
γ2dz

)
, and Z = ε2

1

∫
γ2dz, while the auxiliary function

S utilized in the mathematical process and other quantities are described in the appendix. Note that

here k j represents the wave vectors, while α(`)
j denotes the polarization parameters ( j, ` = 1, 2) which

are going to play significant role in soliton collisions we discuss in this section.

The propagation nature of IICSs and ICCSs under inhomogeneous nonlinearities discussed in the

previous section, excites one to explore their collision behaviour driven by the four-wave mixing ef-

fect, which is also of considerable attraction. In this connection, the collision of bright solitons in the

general CCNLS system (2) can be broadly divided into three categories: (i) IICS × IICS, (ii) ICCS

× ICCS, and (iii) IICS × ICCS. Here one should note that the subsystem resulting for the choice (6)

supports only the second type of collision between two ICCSs due to the non-availability of IICSs

as the choice leads to singular solutions. The remaining two versions of the system exhibit all the
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above three types of bright soliton collisions. Through a systematic asymptotic analysis and with

the aid of already available knowledge on soliton collisions in homogeneous systems, we investi-

gate a categorical analysis on the collision scenario for these three cases, which show elastic and

inelastic/shape-changing type collisions of bright solitons with different profile structures. Mathe-

matically, we identify the form of solitons well before (z → −∞) and well after (z → +∞) collision,

as one could not exactly analyze at the collision point around z → 0, where the dynamics is quite

unpredictable because of its shorter span and nonlinear superposition due to interaction. In a standard

way for two-soliton collision, we consider the following asymptotic relations:

Soliton-1: η1R ≈ 0⇒ η2R = 2δk2Rε
2
1 (k1I − k2I)

∫
γ2dz ≈ ±∞ as z→ ±∞, (19a)

Soliton-2: η2R ≈ 0⇒ η1R = 2δk1Rε
2
1 (k2I − k1I)

∫
γ2dz ≈ ∓∞ as z→ ±∞, (19b)

along with the required conditions on k jR and k jI parameters, which we have chosen here as k1R, k2R >

0 and k1I > k2I with opposite signs showing head-on collision (one can also choose same sign to

k jI for overtaking collision). The mathematical form for asymptotic analyses seems similar to that

of homogeneous models reported already [47–49] and we do not present their detailed expressions

here. Considering the length of the article, we devote this section only for discussion on the above

collisions and how they can be controlled/altered by the inhomogeneous nonlinearities.

4.1. Elastic Collision of Two IICSs

As mentioned in the previous section, the inhomogeneous incoherently coupled solitons possess

a standard single hump profile mathematically represented by a hyperbolic secant function. As the

four wave mixing nonlinearity is vanishing for this condition, they behave much similar to the Man-

akov or two-coupled NLS type solitons. Analysis on their asymptotic dynamics reveals a simple

elastic collision between two IICSs by retaining their amplitude, width and velocity after collision,

except with a phase-shift. To be explicit, the amplitude of solitons after collision to that of before

collision takes the form B+
j =

(k1−k2)(k2+k∗1)
(k∗1−k∗2)(k∗2+k1) B−j for right-moving Soliton-1 and B+

j =
(k∗1−k∗2)(k2+k∗1)
(k1−k2)(k∗2+k1) B−j for

left-moving Soliton-2, which ultimately results into |B+
j |

2 = |B−j |
2 representing the unaltered intensi-

ties. Here j = 1, 2 denotes the components A1, A2 and −/+ denotes before/after collision. However,

these identities are greatly manipulated by the inhomogeneity appearing in the medium which by

default affects their collision outcomes as well. For elucidation, we have depicted such a variation

imposed by periodic, kink-like, bell-type, and exponentially growing nonlinearities in Figs. 10-11.

Under constant nonlinearity, both colliding solitons reappears with same amplitude, width and ve-

locity Fig. 10(a). On the other hand, wth periodic type nonlinearities ‘sn(z,0)’ and ‘cn(z,0)’, these

identities exhibit periodic variation along temporal direction z both before and after collision. How-

ever, the maximum amplitude of both solitons remain same amidst their periodic oscillation which

continuously alters the width as velocity as shown in Fig. 10(b-c).

Further, the effect of kink-like nonlinearity is to enhance the amplitude of solitons accompanied

by a compression after collision. This results in an escalated intensity for both the interacting solitons

on the same background. Note that the velocity of both solitons are significantly affected (moving too
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(a) (b) (c)

Figure 10: Elastic collisions of two single-hump shaped IICSs under (a) constant nonlinearity and periodic nonlinearities
with (b) γ(z) = γ0+γ1sn(z, 0) and (c) γ(z) = γ0+γ1cn(z, 0). Here the parameters are chosen as k1 = 1+0.5i, k2 = 1.2−0.5i,
α(1)

1 = 0.75, α(2)
1 = 0.75i, α(1)

2 = 0.5, α(2)
2 = 0.5i, δ = 1, ε1 = 0.5, ε2 = 0.25, γ0 = 2.0, and γ1 = 1.0.

(a) (b) (c)

Figure 11: Elastic collisions of two single-hump shaped IICSs under (a) kink-like nonlinearity γ(z) = γ0 + γ1sn(z, 1) for
γ0 = 2.0, and γ1 = 1.0, (b) bell-type nonlinearity γ(z) = γ0 + γ1cn(z, 1) for γ0 = 1.0, and γ1 = 0.5, and (c) exponential
nonlinearity γ(z) = γ0 + γ1 exp(γ2z) for γ0 = 1.5, γ1 = 0.75 and γ2 = 0.1 with other parameters are chosen as in Fig. 10.
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far away from each other). This can be understood from the variation of relative separation distance,

which is much larger after collision than that of before collision. This occurs specially for the kink-

like nonlinearity only, see Fig. 11(a). The next bell-type nonlinearity given by γ(z) = γ0 + γ1cn(z, 1)

does not alter the amplitude, velocity or width of the soliton before as well well as after collision

except undergoing a tunneling and cross-over effect around the collision point z → 0 based on the

choice γ1 > 0 and γ1 < 0, respectively. In Fig. 11(b), we have shown the tunneling effect in two-

soliton collision which have an excess intensity in the tunneling region only. The final form of interest

is the familiar one resulting into an exponentially growing intensity of the solitons starting well before

the collision and last indefinitely along with commensurate compression of the beam as given in Fig.

11(c). We have observed a prominent feature of kink-like and exponential nonlinearities, that has

the ability to change the nature of soliton collisions. For example, from elastic collision to inelastic

collision. In the present case, these nonlinearities changes the elastic collision of two IICSs into an

inelastic collision and the intensity of both solitons get increased after interaction with a considerable

compression in their width, see Figs. 11(a) and (c).

4.2. Elastic Collision of Two ICCSs

When the four-wave mixing nonlinearity comes into picture, we obtain optical soliton profile

structures ranging from asymmetric single-hump to symmetric double-hump as well as flat-top.

Here, we discuss the collision scenario of such solitons in the presence of inhomogeneous non-

linearities. Our asymptotic analysis shows that the collision between ICCSs is purely elastic as

C+
j =

(k1−k2)(k2+k∗1)
(k∗1−k∗2)(k∗2+k1)C

−
j for right-moving Soliton-1 and C+

j =
(k∗1−k∗2)(k2+k∗1)
(k1−k2)(k∗2+k1)C

−
j for left-moving soliton which

lead to |C+
j |

2 = |C−j |
2. Note that such ICCSs having different profiles reappear unaltered after collision

by retaining their shapes along with other identities such as amplitude, width, and velocity. As an

example, we have demonstrated such elastic collision of two double-hump ICCSs in the A1 compo-

nent and collision between a single-hump and flat-top ICCSs in the A2 component in Fig. 12(a). As

mentioned in the previous section for collision of two IICSs, here these ICCSs undergo modulation

by the inhomogeneous nonlinearity without affecting their elastic nature of collision. The sn and cn

nonlinearities introduce periodic variation of their amplitudes and velocities with smaller magnitude

of temporal oscillations near z → 0 but with same amplitudes. The kink and bell type nonlinearities

do not induce any oscillations in the the amplitude or velocity, instead amplify the intensity after the

transition region in the former while the amplification/suppression at the barrier/well occurs in the

latter. This is quite simple in the case of bell-type nonlinearity which by default preserves the in-

tensities. Finally, the exponential nonlinearity increases the intensities throughout their propagation

as well as under collision by retaining its elastic nature. Also, here we should note their continu-

ous beam compression which is quite opposite to that of amplification. Similar to the previous case,

here also the kink-like and exponential nonlinearities alters the elastic collision of two ICCSs into

an inelastic collision. To be precise, both ICCSs collide and exhibit a step/continuous amplification

in both components for kink-like/exponential nonlinearity by retaining their profile identities even

after collisions, such as both double-hump ICCSs in A1 and a single-hump–double-hump ICCSa in

A2. For illustrative purpose and completeness, we have shown such periodically oscillating, step-like
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compressed amplification, cross-over of the well and amplification with uniform compression of two

ICCSs collisions in Figs. 12-13 for the appropriate choices of arbitrary parameters.

4.3. Energy-Switching Collision of ICCS with IICS

Compared to the previous two collision scenario, the collision between a IICS and ICCS is turned

out to be more interesting. For this purpose, we consider a IICS resulting for the choice S 1 = (α(1)
1 )2 +

δ(α(2)
1 )2 = 0 and another soliton ICCS arising for the general choice S 2 = (α(1)

2 )2 + δ(α(2)
2 )2 , 0, where

the first is assumed to be right-moving while the second is left-moving one. The detailed asymp-

totic analysis reveals the amplitude variation due to collision as B+
j =

(k1−k2)(k2+k∗1)
(k∗1−k∗2)(k∗2+k1) B−j for right-moving

IICS-1 and C+
j =

(
(k∗1−k∗2)(k2+k∗1)|(α( j)

1 κ22−α
( j)
2 κ12)+α( j)∗

2 (α(1)
1 α(1)

2 +α(2)
1 α(2)

2 )/(k1−k2)|2

(k∗1−k∗2)(k∗2+k1)κ2
22 |α

( j)
2 |

2

)1/2

C−j for left-moving ICCS-2. This

amplitude alteration results into the case |B+
j |

2 = |B−j |
2 representing the unaltered intensities repre-

senting elastic collision of IICS. However, |C+
j |

2 , |C−j |
2, which accounts the important reason for

inelastic collision of ICCS. Thus in both components, IICS reappears without any change in their

intensity, while the ICSS undergoes a change in its intensities in opposite sense in both components.

For example, an increase in A1 is accompanied by a commensurate decrease in A2 which conserves

its intensity as well as the total energy of the system. Thus, it can be inferred that the IICS induces

the switching of intensity from one component to another component through ICCS, which leads to

the name energy-switching collision. Note that these intensity variations are purely dependent on the

wave vectors and polarization parameters, not on the nonlinearity of the system. Such an energy-

switching collision between IICS and ICCS with constant nonlinearity is shown in Fig. 14(a), where

a single-hump right-moving IICS is undergoing elastic collision in both components and the inten-

sity of right-moving ICCS with flat-top profile decreases to a single-hump in A1, while its intensity is

increasing in A2 along with a profile change from double-hump to single-hump. This shows that the

extra energy of ICCS after collision in A2 is taken/switched from A1, see Fig. 14(a).

Next, we consider the situation where the nonlinearity is temporally modulated and look for the

change in the collision scenario. As discussed earlier, here also, these varying nonlinearities modulate

the amplitudes, velocity and width of the participating solitons substantially. The energy-switching

nature of ICCS does not change for any choice of considered inhomogeneous nonlinearity, while

the IICS is manifesting itself from elastic into an inelastic-switch due to kink-like and exponential

nonlinearities in addition to the appropriate modulation in its width through a cascaded compression.

For a clear understanding, we have demonstrated energy-switching collision of IICS×ICCS with

constant, periodic, kink-like, bell-type, and exponentially varying nonlinearities in Fig. 14(b-c) and

Fig. 15(a-c). As their implications are well discussed in the previous cases, we refrain from giving

here again. All these nonlinearities induce change in their identities of the colliding solitons IICS

and ICCS, but without affecting the switching nature. Thus, we are getting IICS-ICCS collision with

periodical variations, step-like amplitude enhancement along with compression, tunneling through

an high amplitude barrier, and continuous amplification with compression.
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(a) (b) (c)

Figure 12: Elastic collisions of two double-hump ICCSs in A1 and collision of single-hump–flat-top ICCSs in A2
components under (a) constant nonlinearity and periodic nonlinearities with (b) γ(z) = γ0 + γ1sn(z, 0) and (c) γ(z) =

γ0 + γ1cn(z, 0). Here the parameters are chosen as k1 = 1 + 0.5i, k2 = 1.25 − 0.5i, α(1)
1 = 0.75, α(2)

1 = 1.9, α(1)
2 = 1.5,

α(2)
2 = 2.1i, δ = 1, ε1 = 0.5, ε2 = 0.25, γ0 = 2.0, and γ1 = 1.0.

(a) (b) (c)

Figure 13: Elastic collisions of two ICCSs with double-hump, flat-top and single-hump structures under (a) kink-like
nonlinearity γ(z) = γ0 +γ1sn(z, 1) for γ0 = 2.0, and γ1 = 1.0, (b) bell-type nonlinearity γ(z) = γ0 +γ1cn(z, 1) for γ0 = 1.5,
and γ1 = −0.5, and (c) exponential nonlinearity γ(z) = γ0 + γ1 exp(γ2z) for γ0 = 1.5, γ1 = 0.5 and γ2 = 0.1with other
parameters are chosen as in Fig. 12.
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(a) (b) (c)

Figure 14: Energy-switching collision of left-moving ICCS due to elastically reappearing right-moving IICS under (a)
constant nonlinearity and periodic nonlinearities with (b) γ(z) = γ0 + γ1sn(z, 0) and (c) γ(z) = γ0 + γ1cn(z, 0). Here the
parameters are chosen as k1 = 1 + 0.5i, k2 = 1.2−0.5i, α(1)

1 = 0.75i, α(2)
1 = 0.75, α(1)

2 = 0.75, α(2)
2 = 1.54, δ = 1, ε1 = 0.25,

ε2 = 0.2, γ0 = 2.0, and γ1 = 1.0.

(a) (b) (c)

Figure 15: Energy-switching collision of left-moving ICCS due to elastically reappearing right-moving IICS under (a)
kink-like nonlinearity γ(z) = γ0 +γ1sn(z, 1) for γ0 = 2.0, and γ1 = 1.0, (b) bell-type nonlinearity γ(z) = γ0 +γ1cn(z, 1) for
γ0 = 1.0, and γ1 = 0.5, and (c) exponential nonlinearity γ(z) = γ0 + γ1 exp(γ2z) for γ0 = 1.5, γ1 = 0.75 and γ2 = 0.075.
Here the other parameters are chosen as in Fig. 14.
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5. Inhomogeneous Soliton Bound States

Further from the soliton collisions, one shall also explore the dynamics of soliton bound states

resulting for the choice of equal velocity solitons. In recent years, this attracted much attention

in the aspects of soliton molecule formation in optical and atomic systems and referred as velocity

resonant solitons. If we consider the case of homogeneous medium with constant nonlinearity and the

velocity of two solitons are depend on the wave vectors, in particular their imaginary part k jI for j-th

soliton. Under such velocity resonance k1I = k2I , there occurs a periodic attraction and repulsion of

contributing solitons, which are usually called as breathing of solitons. Unlike the standard breathers

appearing on constant non-zero background, these breathing solitons can exist on both zero as well

as non-zero background. In our system, we can form soliton bound states for the above discussed

three cases of collisions. Further, the bound states among different profile solitons are also possible

with appropriate choice of polarization parameters determining the contribution of four-wave mixing

nonlinearity. Without providing much mathematical forms, we have demonstrated such soliton bound

states arising between two ICCSs exhibiting double-hump–single-hump (in A1) and flat-top–single-

hump (in A2) structures are shown in Fig. 16. A similar breathing solitons can be observed for the

other two cases as well as with non-zero initial velocities which we have not given here considering

the length of the article. Apart from the two-soliton-bound-states, one can investigate the formation

of multi-soliton bound structures as well as the interaction between solitons and bound states which

is of further interest and we do not discuss the details here.

6. Conclusion

In conclusion, we have investigated the propagation and collision dynamics of inhomogeneous

solitons in a system of non-autonomous coherently coupled nonlinear Schrödinger (CCNLS) mod-

els. By identifying an appropriate similarity transformation that reduces the considered CCNLS into

the canonical integrable CCNLS systems and with the aid of the Hirotas bilinear method, we have

constructed general soliton solutions. In particular, we classify the solutions into two categories and

refer them as inhomogeneous coherently coupled solitons and inhomogeneous incoherently coupled

solitons that respectively appear in the presence and absence of four wave mixing effects. After-

wards, the dynamics of these solitons featuring non-trivial profiles are explored by considering var-

ious temporal modulation of nonlinearities namely, step-like switching nonlinearity, optical lattices

and exponential nonlinarity. Our analysis revealed that depending upon the nature of nonlineari-

ties the modulated CCNLS system can admit various special localized coherent structures displaying

distinct behaviours, like periodically varying solitons, soliton compression with an unusual hike in

its intensity, tunneling/cross-over effects due to a localized barrier/well, monotonous amplification

with compression of width and a sudden appearance of a solitonic excitation that grows in amplitude

during propagation. Then, influence of such inhomogeneous nonlinearities on soliton collisions are

also investigated briefly along with soliton bound states. Interestingly, we point out that the collision

nature can be altered substantially for certain type of nonlinearity management, namely kink-like

nonlinearities. The results presented in this work will be applicable to the studies on engineering
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(a) (b) (c)

(d) (e) (f)

Figure 16: Soliton bound states between two ICCSs having double-hump–single-hump in A1 and flat-top–single-hump in
A2 components under (a) constant, (b) periodic-sine, (c) periodic-cosine, (d) kink-like, (e) bell-type, and (f) exponential-
growth type nonlinearities. Here the parameters are chosen as (a) γ0 = 2.0, γ1 = γ2 = 0.0, ε1 = 0.025 and ε2 = 0.0, (b)
γ0 = 2.0, γ1 = 1.0, γ2 = −0.12, ε1 = 0.5 and ε2 = 0.25, (c) γ0 = 2.0, γ1 = 1.0, γ2 = −0.12, ε1 = 0.5 and ε2 = 0.25, (d)
γ0 = 2.0, γ1 = 0.5, ε1 = 0.75 and ε2 = 0.25, (e) γ0 = 1.0, γ1 = 0.5, ε1 = 0.75 and ε2 = 0.75, (f) γ0 = 1.5, γ1 = 0.75,
ε1 = 0.5 and ε2 = 0.25, with other parameters as k1 = 2.3, k2 = 2.5, α(1)

1 = 0.75i, α(2)
1 = 1.9, α(1)

2 = 1 + i, and α(2)
2 = 1 − i.
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optical solitons and their experimental realization towards their controlling mechanism. Especially,

this will have ramifications in the study of soliton propagation in graded refractive index (GRIN)

medium. Further, the present optical engineering process can be extended to the setting of atomic

soliton management in pseudo-spinor condensates and in binary condensates with four-wave mixing

effects. Now, it is quite natural to look for the influence of such modulations in higher-dimensional

nonlinear optical systems featuring vortex solitons, soliton bullets, resonant solitons, lump solitons

and dromians. An advantage of our present study it can be straightforwardly extended to multicom-

ponent systems with more than two fields, to name a few multimode propagation in GRIN media

with anisotropy, spinor condensates with hyperfine spins F = 1 and 2.
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Appendix

The auxiliary function S and other quantities appearing in the two-soliton solution take the fol-

lowing form: the auxiliary function s is given by

S = S 1e2η1 + S 2e2η2 + 2S 3eη1+η2 + eη1+η∗1+2η2+λ11 + eη1+η∗2+2η2+λ12 + eη2+η∗1+2η1+λ21

+eη2+η∗2+2η1+λ22 + e2η1+2η∗1+2η2+λ1 + e2η1+2η2+2η∗2+λ2 + e2η1+η∗1+2η2+η∗2+λ3 .

eRu =
κuu

(ku + k∗u)
, eδ0 =

κ12

(k1 + k∗2)
, eδ

( j)
uv =

δδ2α
( j)∗
v S u

2(ku + k∗v)2 , eεuv =
S uS ∗v

4(ku + k∗v)4 ,

eδ
( j)
u =

δδ2α
( j)∗
u S 3 + (k1 − k2)(α( j)

1 κ2u − α
( j)
2 κ1u)

(k1 + k∗u)(k2 + k∗u)
, eτu =

S uS ∗3
2(ku + k∗1)2(ku + k∗2)2 ,

eλuv =
(k1 − k2)2κuv S 3−u

(ku + k∗v)(k3−u + k∗v)2 , eµ
( j)
uv =

(k1 − k2)2α
( j)
3−uS uS ∗v

4(ku + k∗v)4(k3−u + k∗v)2 ,

eθuv =
|k1 − k2|

4S uS ∗v
4D̃(ku + k∗v)2

(α(1)
3−uα

(1)∗
3−v + δα(2)

3−uα
(2)∗
3−v),

eλu =
(k1 − k2)4S 1S 2S ∗u

4(k1 + k∗u)4(k2 + k∗u)4 , eλ3 =
(k1 − k2)4S 1S 2S ∗3

2D̃
, eR4 =

|k1 − k2|
8|S 1|

2|S 2|
2

16D̃2
,

eφ
( j)
u =

δδ2(k1 − k2)4(k∗1 − k∗2)2S 1S 2α
( j)∗
3−uS ∗u

8D̃(k1 + k∗u)2(k2 + k∗u)2
, eR3 =

|k1 − k2|
2(κ11κ22 − κ12κ21) + |S 3|

2

(k1 + k∗1)|k1 + k∗2|
2(k2 + k∗2)

,

eµ
( j)
u =

(k1 − k2)2S u

2D̃

([
(k3−u + k∗1)2 + (k∗2 − k∗1)(k3−u + k∗2)

]
α

( j)
3−uα

( j)∗
1 α

( j)∗
2

+(k3−u + k∗1)(k∗1 − k∗2)α( j)∗
1 (α(3−u)

3−u α(3−u)∗
2 ) − (k∗1 − k∗2)(k3−u + k∗2)α( j)∗

2 (α(3−u)
3−u α(3−u)∗

1 )

+(k3−u + k∗1)(k3−u + k∗2)α( j)
3−u(α(3−u)∗

1 α(3−u)∗
2 )

)
,
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where

S u = (α(1)
u )2 + δ(α(2)

u )2, S 3 = α(1)
1 α(1)

2 + δα(2)
1 α(2)

2 ,

D̃ = (k1 + k∗1)2(k∗1 + k2)2(k1 + k∗2)2(k2 + k∗2)2,

κuv =
(
α(1)

u α(1)∗
v + δ2α

(2)
u α(2)∗

v

)
/(ku + k∗v).

Here u, v, j, l = 1, 2, while δ and δ2 take suitable value as given in Eqs. (3), (4), and (6) for the

respective CCNLS model.
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