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Abstract

This work investigates fractional stochastic Schrodinger evolution equations in a Hilbert
space, incorporating complex potential symmetry and Poisson jumps. We establish the
existence of mild solutions via stochastic analysis, semigroup theory, and the Monch
fixed-point theorem. Sufficient conditions for exponential stability are derived, ensuring
asymptotic decay. We further explore trajectory controllability, identifying conditions for
guiding the system along prescribed paths. A numerical example is provided to validate
the theoretical results.

Keywords: exponential stability; Poisson jump; Rosenblatt process; fractional Schrodinger
equation; Riemann-Liouville derivative; trajectory control
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1. Introduction

The Schrodinger equation (SE) is a foundational element of quantum mechanics,
governing the evolution of a system’s wave function, a complex-valued function that
captures the probabilistic behavior of quantum particles. While the classical SE, based on
integer-order derivatives, effectively models many quantum systems, it faces limitations
when dealing with phenomena exhibiting memory effects, non-locality, or anomalous
diffusion. These complexities necessitate more sophisticated mathematical frameworks.

The SE plays a pivotal role in a wide range of scientific and technological domains,
including atomic physics, quantum optics, semiconductor theory, and materials science. For
instance, it is central to modeling light-matter interactions and predicting atomic spectra in
spectroscopy. In electronics, it underpins the quantum mechanical behavior of transistors,
essential components in modern computing devices (see [1,2]).

Recent advances have explored generalized formulations of the SE, particularly in
contexts where stochasticity and memory effects are significant. One such generalization
involves extending the SE to include fractional derivatives, giving rise to fractional
Schrodinger equations (FSEs). Fractional calculus, allowing differentiation and integration
of arbitrary (non-integer) order, has emerged as a powerful tool for modeling physical

Symmetry 2025, 17,1173

https:/ /doi.org/10.3390/sym17081173


https://doi.org/10.3390/sym17081173
https://doi.org/10.3390/sym17081173
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-6146-5544
https://orcid.org/0000-0002-3624-5363
https://orcid.org/0009-0005-0199-2026
https://doi.org/10.3390/sym17081173
https://www.mdpi.com/article/10.3390/sym17081173?type=check_update&version=3

Symmetry 2025,17,1173

20f27

systems with hereditary properties [3-7]. The resulting FSEs enable a more accurate
representation of systems governed by long-range dependencies and spatial-temporal
memory [8].

Stochastic perturbations represent another key direction of generalization. Introducing
randomness into the SE framework leads to stochastic Schrodinger equations (SSEs), which
describe quantum systems subject to noise or uncertainty. By combining both extensions,
fractional derivatives and stochasticity, one arrives at the fractional stochastic Schrodinger
equation (FSSE), a powerful model for quantum systems influenced by both memory effects
and random fluctuations [9-12]. These equations are especially relevant in quantum control,
quantum decoherence, and the study of open quantum systems.

An important concept in the analysis of such systems is controllability, i.e., the ability to
steer a system from an initial state to a target state using suitable control inputs. Trajectory
controllability (TC), a more refined concept, emphasizes the capability to guide a system
along a predefined path over time. This is particularly critical in quantum technologies,
where precision in controlling system dynamics is essential. Chalishajar et al. [13,14]
advanced the concept of TC, especially in the context of infinite-dimensional stochastic
and fractional systems. Prior studies, such as [15-17], have explored TC for stochastic
integrodifferential equations [18], motivating further exploration into FSSEs.

Recent Developments in Fractional Schrodinger Equations:

FSEs have garnered significant attention for their capacity to model systems with
non-local interactions and memory. Various analytical and numerical methods have been
employed to derive exact or approximate solutions. These include the mapping method,
the (G'/G)-expansion method, and spectral approaches, each yielding soliton solutions
under specific conditions. Time-dependent coefficients in FSEs offer further flexibility in
capturing dynamic system behavior. The Darboux transformation has also been adapted
to fractional settings, enabling the generation of multi-soliton solutions and expanding
the integrability of such systems. Experimental studies, including those involving Lévy
waveguides and femtosecond laser pulses, have demonstrated the real-world relevance
of FSEs, particularly in optical signal processing. Other studies have examined fractional
Schrodinger models with singular potentials using Caputo derivatives, contributing to a
deeper understanding of weak solution frameworks and their role in modeling singular
quantum systems.

Comparative Insights on Fractional Derivatives:

The choice of fractional derivative, such as the Riemann-Liouville (R-L) or Caputo
derivative, plays a crucial role in modeling and interpretation. The R-L derivative, although
mathematically rigorous, poses challenges such as non-zero derivatives for constants and
singularities at the origin for some elementary functions. The Caputo derivative mitigates
these issues, particularly allowing the incorporation of traditional initial and boundary
conditions, which is critical in physical modeling [19-21]. Despite this, each derivative has
its use cases and trade-offs, and selecting the appropriate operator depends on the specific
application [22-24].

The problem regarding the “right” fractional derivatives is more delicate and has no
unique solution. Presently, the main approach for introducing the fractional derivatives is
to define them as the left-inverse operators to the fractional integrals. However, even for
the R-L fractional integral, there exist infinitely many different families of operators that
fulfill this property [10,25,26].
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Remark 1.

1.

The R-L derivative has certain disadvantages when trying to model real-world phenomena
with fractional differential equations. The R—L derivative of a constant is not zero. In addition,
if an arbitrary function is a constant at the origin, its fractional derivative has a singularity at
the origin, for instance, the exponential and Mittag—Leffler functions. These disadvantages
reduce the field of application of the R—L fractional derivative.

To calculate the fractional derivative of a function in the Caputo sense, we must first compute
its classical derivative, which imposes stricter requirements on differentiability and reqularity.
It is defined only for differentiable functions. Caputo’s derivative demands higher conditions
of reqularity for differentiability: to compute the fractional derivative of a function in the
Caputo sense, we must first calculate its derivative. Caputo derivatives are defined only
for differentiable functions, while functions that have no first-order derivative might have
fractional derivatives of all orders less than one in the R-L sense.

One of the great advantages of the Caputo fractional derivative is that it allows traditional
initial and boundary conditions to be included in the formulation of the problem in a real-world
situation. In addition, its derivative for a constant is zero.

The Caputo derivative is the most appropriate fractional operator to be used in modeling
real-world problems. It is customary in groundwater investigations to choose a point on
the centerline of the pumped borehole as a reference for the observations; therefore, neither
the drawdown nor its derivatives will vanish at the origin, as required. In such situations
where the distribution of the piezometric head in the aquifer is a decreasing function of the
distance from the borehole, the problem may be circumvented using the complementary, or
Weyl, fractional order derivative.

Remark 2. To incorporate comparative experiments with existing fractional-order models, such as

those based on the Caputo derivative [27], we effectively demonstrate the advantages or limitations

of the R-L derivative in the proposed approach. Such a comparative analysis would provide a clearer
understanding of the performance, accuracy, and potential application scope of the R—L derivative
model in contrast to widely used alternatives such as the following:

Comparative experiments enhance the credibility of the proposed method. It requires initial
conditions in terms of fractional integrals, which, though more abstract, accurately reflect
memory effects and non-locality, a hallmark of many physical, biological, and engineering
systems. Thus, the R-L derivative is chosen when initial conditions based on fractional
integrals are meaningful or required by the mathematical modeling of the system.

It is suitable for problems where initial conditions arise naturally from fractional integrals or
when the system inherently depends on past states expressed through integrals.

It Highlights how the R-L derivative model performs relative to the Caputo model, which can
strengthen the argument for choosing one over the other or reveal specific scenarios where the
R-L derivative offers unique advantages, like a strong historical foundation, being non-local
and memory-dependent, etc.

We summarize the same in the following chart:

Caputo Derivative &

Feature Riemann-Liouville

Derivative

Definition

Derivative is applied after ~ Integral is applied after the
the integral operator. derivative operator.
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Feature

Caputo Derivative &
Riemann-Liouville
Derivative

Initial Conditions

Accepts initial conditions
in terms of integer-order
derivatives (e.g., position
and velocity), making it
more practical for physical
models.

Requires initial conditions
in terms of fractional-order
derivatives, which are
often difficult to interpret
or measure physically.

Physical Interpretability

More suitable for physical
and engineering problems;
initial conditions have clear
physical meaning.

Less intuitive for
real-world initial value
problems due to non-local
fractional initial conditions.

Mathematical Generality

Slightly less general than
Riemann-Liouville in
theory.

More general
mathematically; includes a
wider range of functions.

Zero Derivative of
Constants

Caputo derivative of a
constant is zero.

Riemann-Liouville
derivative of a constant is
non-zero.

Use in Initial Value

Preferred in modeling
real-world IVPs due to
classical-style initial
conditions. & Less

Problems

commonly used in IVPs

unless initial fractional

conditions are known.

Laplace transform leads to  Laplace transform results
Complexity in Laplace terms with initial involve fractional-order
Transform conditions in standard initial conditions, adding

(integer-order) form. complexity.

More challengin,
. Easier to implement . S .
Computational . . computationally, especially
. numerically for physical .

Implementation for setting bound and

problems.

initial conditions.

Remark 3. The R-L derivative allows the construction of the fractional Schrodinger equation, which

generalizes the classical Schrodinger equation. This generalization helps in the following ways:

*  Modeling quantum systems where standard integer-order models fail, such as anomalous
diffusion or quantum transport in fractal or porous media.
*  Describing non-Markovian dynamics, which are common in realistic quantum systems.

For fractional Schrodinger systems derived from fractional path integrals or fractional Brownian
motion models, the R—L derivative naturally aligns with these interpretations due to its integral-
based, non-local formulation.

Remark 4. The SE can be used to calculate the properties of a system at a given moment in time. In
its time-dependent form, it describes how these properties evolve over time. SE is the fundamental
equation of quantum physics, analogous to Newton’s Laws of Motion in classical physics. Howeuver,
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unlike Newton’s laws, the SE is not deterministic in the same way.

In classical physics, if we know an object’s position and momentum, Newton’s Laws allow us
to precisely predict its future position and momentum, provided we account for all acting forces.
Newton’s laws are deterministic; they describe how forces interact and dictate the object’s trajectory
at any given moment.

In contrast, quantum mechanics introduces a different paradigm. When a photon is detected on a
photographic plate, it manifests at a specific location, exposing that part of the plate to light. This
does not mean that the photon initially traveled as a wave and then landed as a particle. Instead,
under this interpretation, the particle does not have a defined physical reality until it is observed.
The SE, in this view, serves as a mathematical tool for predicting where the particle is likely to
be detected.

Beyond this, one can analyze the TC of the particle within a fractional-order system, considering
non-dynamical motion. This approach allows for a deeper exploration of quantum behavior in
complex systems.

Main Contributions of This Work:

In this study, we investigate the TC of FSSEs with complex potential symmetry using
the R-L fractional derivative. The primary contributions are as follows:

1.  Existence of Solutions: We establish the existence of mild solutions for FSSEs using
the Monch fixed point theorem, fractional calculus, and semigroup theory.

2. Stability and TC Analysis: We analyze the exponential stability of the solutions via
Gronwall’s inequality and derive sufficient conditions for trajectory controllability
under stochastic and memory-driven dynamics.

3. Numerical Validation: Numerical simulations support the theoretical results,
demonstrating how various control strategies influence system behavior in the
presence of stochastic noise and fractional effects.

By integrating analytical and numerical techniques, this study deepens the
understanding of control in fractional quantum systems affected by stochastic
perturbations. The results have implications for both theoretical advancements and
practical applications in quantum technologies.

The remainder of this paper is organized as follows: Section 2 presents definitions and
preliminaries. Section 3 provides solvability results using semigroup theory and fixed-point
techniques. Section 4 addresses exponential stability, while Section 5 investigates trajectory
controllability. Section 6 includes a mathematical example, and Section 7 presents numerical
simulations and error analysis.

2. Preliminaries

We begin this section with the abbreviation table, followed by preliminaries, which
are quite useful to prove our main results.

Recently, Durga and Muthukumar [28] studied the exponential behavior of the
nonlinear fractional Schrodinger evolution equation with complex potential and Poisson
jumps using the strong notion called the Caputo fractional derivative (not R-L) of the
following form:

£ (ODL3) (3,) = B3(,3) = 1/ (1)3(,3) + @(,3(x, ) + 0, 3(x,3))

+ /%p(t,g(x,x),n)N(dt,dn), x€e€ll,x €eZ=10,T1],
3(0,x) = 30(x), x €I, T1 C R,
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1

1

~l—u

I

Notation Description

Complete probability space with the filtration
(5,7) (S, x > 0).
A Laplace operator.
R Set of all real numbers.

Banach space of all measurable and square-integrable

2 —r2 . P q &

L5 (OR) = L5, (Q5, PIR) values in R.
#H Separable Hilbert space with norm || - [| 5.
E(3) Expectation of ;.
T Intervals [0, T].

Rosenblatt process with the Hurst parameter
{ZH(IX):IXEI} 2y (1

e (11).

In [29], the authors studied the fractional Schrodinger equation with potential and
optimal controls of the following form:

%(CD}K_“x)(x,y) —Ax(x,y) =1 (y)x(x,y) =0, a € (0,1), y€ Q,x € (0,T],

x(0,y) =x0(y), y €

Here, the authors used the stronger fractional derivative given by Caputo, but not
R-L. Also, in both papers, the authors did not study TC and the numerical simulation of
the system. The Schrodinger system with several forms is highly useful in physics and
other real-life situations, and so the numerical simulation is a must.

In our study, we have used the weaker notion of Caputo called the R-L fractional order
derivative with the strongest controllability called TC. Clearly, our work expands upon the
work of [28] and, in a similar way, the work of [29]. More recently, Chalishajar et al. [30]
investigated the optimal control problems for a class of neutral stochastic integrodifferential
equations with infinite delay driven by Poisson jumps and the Rosenblatt process in
Hilbert space involving concrete-fading memory-phase space, in which we define the
advanced phase space for infinite delay for the stochastic process. For more details about
the Rosenblatt process, one can refer to refs. [31,32].

Let us consider FSSEs with complex potential and Poisson jumps in the Hilbert space.

3) (<, 0) =D3(x, ) = W (0)3(x,6) +@(x,5(x,£)) +0(x,5(x,£))dZs (%)

+ é}@ﬁ%@ﬂmMMMLEEJKEIZmJL
3(0,6) = 500, Le], 1)

where % <a<1,31%is the (1 — a)-order R-L derivative, and J C R? is a bound domain

with a smooth boundary dJ. Let A refer to the Laplacian operator in Eéx (Q,R?), where 3

is a complex-valued function in Eé (Q,Z x J). Finally, [ = max IC(x)|| with ¢ € C(Z,R)
D( XE

is a positive constant, and the function [ describes a potential. 3o(¢) is the initial data.

The system (1) is transformed into a Cauchy problem by setting the state 3(1x, -), which
takes values in H = E%K (Q),7) and is a real separable Hilbert space with the norm || - ||.
We define Aj = iA; with 2(A) = H{(J) N H2(J). Then, A is the self-adjoint operator with
a discrete spectrum. Next, 3 the eigenfunctions {(j }c 2+ form an orthonormal basis for
EZ(J]) with corresponding & st - < O < .- < 9 < % <0, A% = Ky, and k=1,
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2,3,--,0k € Z(A). Ais the infinitesimal generator of a strongly continuous semigroup
T (x) € H provided by the following (according to the Hille-Yosida theorem [33]):

i(l=x)

(T80 = g [ " st @

Let N(dt, dn) be the Poisson counting measure that is induced by the Poisson point
process #(-) with the characteristic measure (2,%8(2)). Let @ : T x L% (Q,R) —
L2 (QR), ¢ @ Tx L% (O,R) — L% (Q,R), and p : T x L% (O,R) x 2\ {0}
— E%K (), R) be continuous functions.

Let3(x):Z — Hand S := {3(x,-,w):Z xJx Q — 1} be a collection of random
variables known as a stochastic process. One can write (X, -) instead of 3(x,-,w) and
3(%,): TxQ — H.Let {#(-) : x € T} be an Fx-adapted Poisson point process that takes
its values in (2,8 (%)), with a o-finite intensity measure A(dy). An #{-valued random
variable, denoted by E%M (Q, 7-2), is a Banach space endowed with the norm

= (IE‘,]|5(D<,~,w)H2)1/2, w € O. Let C(l’,ﬁ%K (0,7:[)) be the Banach space of all
continuous maps from Z to £ (Q), #), satisfying the condition E|[3(, -)||> < co. Let C be
the closed subspace of all continuous processes 3 that are continuous on # and correspond
to the space C (I xJ, L% (Q, 7-1)) consisting of Fx-adapted measurable processes
{3(,-) : x € Z} with the norm

E3]1z = sup{E|j3(x,0)||*:V ¢ € ], x € T}.

Fractional Brownian motion (fBm) is utilized largely due to its self-similarity,
stationarity of increments, and long-range dependence (for more details see [34,35].
Tudor [36] investigated the Rosenblatt process, which is a self-similar process with
stationary increments, and it appears as the limit of long-range dependent stationary series
in the non-central limit theorem. Subsequently, Maejima and Tudor [37] established some
new properties of the Rosenblatt distribution. It is known that the Rosenblatt process has
the following properties [37]:

(i)  Zy is H-self-similar; that is, the processes {Zy,(cy ), X > 0} and {cyZy(x), x > 0}
have identical finite-dimensional distributions V ¢ > 0.

(if) Zy has stationary increments; that is, the finite-dimensional distribution of the process
{Zy(x +0) —Zy (), x > 0} does not depend on ? > 0.

(iii) All the moments of the process Zy are finite; its covariance function coincides with
the covariance function of a standard fBm with the Hurst parameter #:

1 H

ElZu(x) = Zn(©)] = 5 (32 + 2 = [ =)

(iv) The trajectories of the Rosenblatt process are Hoder continuous with an arbitrary
order § < H.

The Wiener—Ito multiple integral of order k with regard to the standard Brownian
motion (B(y))ycr is as follows:

Zh(x) = c(b) [

( T0 oy ) )

/ [1C—wi), dl |dB(y1) - - dB(yx), (©)
r+\Jo i3

where ¢4 = max(/,0), and the constant ¢(H, k) is a normalizing constant that ensures
E(Zk,(1))? = 1. Let h be a function of Hermite rank k; that is, if # admits the following
expansion in Hermite polynomials
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Normalized Amplitude

W) = Y i), o = ;E[hmw(m))},

j=0

k = min{j|c; #0} > 1,2where H;(3) is the Hermite polynomial of degree j provided by
Hi(3) = (=1)ex %e’%. The process (Z%,(x)) x>0 is called the Hermite process.

(i) Ifk =1, the process provided by (3) is the fBm with H € (%, 1);

(if) If k =2, (3) is known as the Rosenblatt process [36].

Observation of Figure 1 says that fBm exhibits long-range dependence and self-similarity
with Gaussian increments, while the Rosenblatt process (non-Gaussian and long-memory)
shows more irregular and “bursty” behavior, typical of higher-order Hermite processes.

Sample Paths: Fractional Brownian Motion vs. Rosenblatt Process

1.0} » Fractional Brownian Motion (H=0.75)
l“ == Approximate Rosenblatt Process
H
1!
1
0.8 II 1
1
!
fu
[} 1:
0.6 h
[}
f
1
0.4r1 "
1
1
; 8
_ ¥ A 11
0.2 lﬁm 'l\_“l\el 'l b,| X
[ Y I aa n
W ! VA 1o v
1 wl a
| \ I
0.0F i l’, "“l Mot i Y "\ b ]
1 o W \ r\is I
\ ’\r’ “\ 1\ Il (0 ‘\\" ll ‘,\ n Ny |
N -\.J"’l Lo Mi_paoeal VAL Nrasan S
—0.2k 1 . ; ; \ .
0.0 0.2 0.4 0.6 0.8 1.0
Time

Figure 1. The visual comparison of sample paths between fBm with Hurst parameter H = 0.75, and
an approximate Rosenblatt process, derived from a nonlinear transformation of fBm.

Definition 1 ([37]). Let H € (%,1). Then,

V4 d e BKH/ BKH/ dv|dB(y1)dB 4
wG)=don) [ [0 [ S o) S e | aBu)dBn), @
where B = {B(x): x € T} is a Wiener process, H = "fl, d(H) = ST % isa

normalizing constant, and K™ (1) is the kernel

X
KM(x,0) = cﬂs%*H/ (U—Z)H*%UH*%dU, X >,
!

H(H-1)

her@ C’H == ‘B(zTH

Definition 2 ([32]). If ¢ : T — L3(#, 1) satisfies [, Hcp(z)||2£gd2 < oo, then the system (3) is

X 2 X )
EH/O 4>(2)dZQ(Z)H <oy MZH*/O lp() 192 (5)
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For more information and essential findings regarding the Rosenblatt process, one
may consult [36,37].

Definition 3 ([38,39]). The R-L fractional integral of order &, n — 1 < & < n, for a continuous
function by : T — H, is defined by the following:

90(0) = g [ 0= 0 oAz, ©)

Definition 4 ([38,40]). The R-L fractional derivative of order a of a continuous function b : T —
H is defined by the following:

Dth(x) = TAH(x), x>0, %

provided h(x) is reqular in its domain I.

Definition 5 ([38,41]). The Caputo fractional derivative of order a for a function ty : T — H can
be defined as follows:

CDE, b(x) o / )W (), -1 < <,
0

where (n) denotes the n'"* derivative, provided that R.H.S is pointwise defined on Z.

Note: The order a € (0,1) of h : Z — H is as follows:

n—1

Cot(x) = 0% () — L - 5(0)).

Definition 6 ([38]). The Mittag—Leffler function is defined as follows:

Eoc,ﬁ(ﬁ) :ngom,a,ﬁ>0,5€(c, 8)

where C denotes the complex plane. For B =1, Ex(3) = Ex1(3).

Definition 7 ([38]). The Mainardi’s function is as follows:

v (=3")
My (3) _Enlf(l—tm—tx)' 0<a<l, 3eC.

For%<0¢<1,

%(K)Z/OOOMM@) (x*0)3d3, Sa(x —06/ (M, (D)7 (x*0)3d;, x >0, ;€H.

Lemma 1 ([33]). {7 (x),x > 0} is a strongly continuous bounded operator on L>(J) and
1703l 23y < Nlall c2y-

Definition 8 ([33]). A one parameter family { Ty (X )} w >0 of bounded linear operators mapping
from a Banach space X into itself is said to be a strongly continuous cosine family, provided

1. Ta(X)x is continuous in X on R.

2. Ta(x)D(¥) C DV and ATo(x)x = Tu(x)Ax,¥ x € D(¥), x > 0.
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3. Ta(x)xis a solution of (1) forall x € D(V).

Definition 9 ([33]). The fractional sine family S, : [0,00) — L(H) associated with Ty is
defined by the following:

) :/n(z)dz, % > 0.
0

Lemma 2 ([29]). Let [ = max llo(x)|| and V € H?(Z). For any T of R?,
KE

W5l 2y < UVl ey 131l 223
Lemma 3. If V : T — H, then ||V|| is the Lebesgue integrable.
The Housedorff MNC, B(+), is defined as follows:
B(P) = inf{e > 0; P has a finite € — netin # }.

Lemma 4 ([42]). Let % be a Banach space and P, R C ¥ s.t,

(1) P is precompact; B(P) = 0;

2) B(P)<B(R),PCTR;

3 BP+R)<B(P)+B(R) hereP+R={l+x; LcB(P) x<B(R)}

4)  B(P)UR <max{B(P),B(R)};

(5)  BAP) <|AB(R)VAeR;

(6)  Let {u,}5 ; be a sequence of Bochner integrable functions from J to H with |Ju, (x)]| <
m(x), Vix €J,n>1, here(x) € L(J;RT), then p(x) = B({un};n>1) € L(J;

RT) s.t
ﬁ({/ox u, (D)l n > 1}) SZ/OIx d()d

Lemma 5 ((Monch FPT) [43]). Let D be a closed convex subset of Hand 0 € D. If®o:D— #H
is continuous and of the Monch type, i.e., ® is satisfied,

B C D, Biscountable and, B C co({0} U®(B)) = B is compact;
then, ® has a fixed point in D.

3. Main Results

Here, we prove the existence of the mild solution of (1) using the preliminaries in
Section 2.

Definition 10. 3(-,¢) : Z x J — H is a mild solution of (1) if

0,0 = T0s(0)+ [0S, (x 0 (30,0

+ i/[x(x — ) 1S, (% )(D(Z,;)(Z,é))dz—ki/[)M(M — )% 18 (x = 04,3, €))dZ4 ()
[T =08 (= D50 6 ) S ) ©)

We make the following assumptions in order to demonstrate the existence result:
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(H1) (i) For x € Z, 31,32 € H, @(-,0) = 0, My > 0, and operator @ : Z x H — 7 satisfies
El@(x,51) - @(x,5)|* < MoE[31 — 52/*
(ii) For Kp(x) € £L1(Z,R*T),3 Q C Cs.t

pla(x,Q)) <Ko sup B(Q(0)).

—1<60<0

(H2) (i) For x € Z, 31,3 € H,0(-,0) = 0 and M, > 0, operator o : T x H — LY(A,
#) satisfy
Ello(x,31) — o(,52) [ < MoE|l31 — 32/

(ii) For Ky (x) € LY(Z,R*),3 Q C Cs.t

Plo(x,Q)) <K, sup B(Q(0)).

—1<60<0

(H3) (i) Forae. x €Z,31,32 € H and M, > 0, operator p : 7 x H x 2 {0} — H satisfy

/yEHP(IX/al(N)ﬂ?) = p(x,32(0), ) [PA(d) < ME|31(x) — 52()||*
(ii) A function K, (x) € C(Z xRT),3Q C Csit

Blo(x, Q) <Ko(x) sup B(Q(6)).

—1<60<0

Remark 5.

1. Physical Interpretations in Quantum Systems: In Schrodinger-type systems, the Hamiltonian
or generator of the evolution may be modeled as an operator. If this operator is Lipschitz
continuous, then a small change in the initial quantum state (wave function) leads to
proportionally small changes in the system’s evolution. This implies robustness and
predictability in how quantum states evolve over time.

2. Control Sensitivity: In quantum control theory, a control operator (e.g., coupling between
system and external field) being Lipschitz continuous means that the output quantum state or
observable changes is the most linear with respect to the control input. This helps to design
feedback control laws and ensures that the system behaves in a predictable and tunable manner.

Existence and Uniqueness of Mild Solution

In this section, we prove the existence and uniqueness result for FSSEEs in a Hilbert
space H, incorporating complex symmetry and a Poisson jump.

Theorem 1. If (H1)-(H3) hold, then (1) has a unique mild solution to .

Proof. Let Z = {3(x,¢) : T xJ — H; 3(0,£) = 30(£), 3(x,£) € C(Z,#)} be a uniform
topology. It follows that @, o, p and (x — 1) 1S, (x — )17 (£)3(1, ¢) are integrable on Z.
To claim ¥ has a fixed point, using Lemma 1, we have HE('X)Hg(ﬁ) < 1,
1S () | 22y < ﬁ, and x > 0.
Let the operator ¥ : # — % correspond to the mild solution as follows:
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(¥)(,0 = Talxhso0)+ [ (x =) 1Sulx = )7 (030, O
b [T =0T (x = 0@(a )+ [ (¢ = 0Ny (¢ = 00 (0, 0)aZu ()
£ [ (=08 (= 0,500 6 ) ().

The proof of the existence of the mild solution is outlined in the following four stages:
Step 1: ¥ maps the bounded set in B...

Letr > 0and 3(x,¢) € By, i.e.,E||3(><,£)H2 <r.

We prove that for 3(x,¢) € B,, 3r; >0, s.tJE||(‘Y3)(D<,€)||2 <r.

Let

E|(¥3)(x, O < SE‘

T (%)30( +/ )18, (x — ) (£)3(2, 0)d
+ i/olx([x — 2)“_1S,X(D< — 2)6’0(2,5(2,6))512

4o / " (% = R 1Sa (% — )03, 0)AZ )

2

i [0 (=S = V(s 30, 4 R d)
SEl50(0)1+ Ty o (<=0 [, Blo(@ste 0, mIPAan)a

IN

ST 2119112 . 202 2
g P e ) (<=0 RIS 0P

Ty R O]

b T [ - B 0P

< Sl + [ P e +
et ] [ Blst 0P

< SEHZ’O(@'ZJFFSZ(M)FZH%ZOO J(rzi/ﬂwj)cmm M, +11412 .

Thus, {(¥3)(x, ) : 3(x,¢) € B.} is bound.
Step 2: ¥ is continuous in B..

Let {3}, € By withlim, 3" = 3be 3 € By. For x € Z, ¢(2,3" (1, £)) — ¢(2,3(2,£))
as n — co. Consider the following:

E| (Y3 )() (¥3) ()|

2

<AR| [ (x =) 1Sy (x =) (O[5 (1, £) — 32, 0)]d
2
+4E|i | T = )01k (x — (@15 (1, 0) — (1, 3(2,0))]d
X 2
1 4E|)i A (x = )" 1S (x =)o (3" (1, 0) — (1,30, 0))]dZx(2)
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+4E i/olx /g(x =" 1S =) [p(s,5" (1, 0)) —P(ba(b@)}mdzrd’?)
< Gt e s 1.0 30,01
i g SO i of
n m 2:(13%]%”(3,4) —3Q 0
4T21X

S - D@

Hence, ¥ is continuous in B,.
Step 3: Show that ¥ is equicontinuous.
Let3(x,¢) € Be. Let X1, Xp € Z.If0 < X1 < Xp < T.

E|[(¥3)(x2,0) = (¥3)(x1, 0|

i/oxz(IXZ - Z)K_lsa(xz =D ()32, £)d fi/o

X1 2

< 4E (x1— )% 1Sy (xq =) (0)3(2, 0)d

X1 2

+4E i/:z% =" Su (w2 = )@ (3 0)d —i/0 (1 — )" Sa(x1 — D@ (2,32, £))d

+4E i/ow(xz— D) LS (2 — V(2,32 €))dZy () —i/olxl(lxl — )18, (1 = D) (4,3(,£))dZx ()

+ 41K i/o'xz /ff(,xz — z)aflsa(lxz — Z)P(S/Z)(?,é),ﬂ)N(dz,d;y)
X1 A )
_i/o /gg(“l =" Su(x1 = Dp(2 32 ), )N(dY, diy)

<A4E

[ o= -5 s 0

“/OM(“1 — )Y [Su(x2 — ) — Salx1 = )] 17 ()30, O)d2
Xo 5
“/K (x2 = ) 1Su(a = )Y (£)3(2, £)d

+4E

i/oIX1 [(lxz AR O 2),171} Su(2 =)@ 3( 0))a

+i/0‘><1([><1 — 2)0471 [SIX(KZ =) — Su(x1 — 2)}60(2,5(3,6))112
Xo 2
+1A (X2 — ) 18, (%o — )@(2,3(2,£))d 2

+4E

i/0'><1 [(lxz ) (kg — 2)%1}5“(%2 — 0o (4,3, 0)dZy ()

+i/0‘><1(|><1 - Z)zx,l [Sa(><2 =) — Sa(x1 — 2)}0(?,5(2,5))d27_[(2)

U Nl 2o (3) + Mo + M, | [l3" —3[F — 0 as n — co.

2

2
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2
+1i / [><2—2)“ 15 (l><2— ) (Z 3(216))dz?{(2)

+4E /Ml/ [(x2 = — (%1 = )" Su(x2 — (32, )N(dr, dn)

—l—i/OKl /ff(m — )t [Sa(x2 —1) — Su(x1 — 2)]p(2,3(2,£))dN(dz,d;7)

2
X2
[, (32 =0 1Sulea = (150, 0)d 1
1
<61+ 6+ 63+ 64 (10)
Now,
& = 3E 1/0 (o =001 = (1 = 0 Sulxa =) (030, )

+ i/OM(M = )" [Salx2 =) = Sa(1 = )] ()32, O)d 2

2
X
+ i/ (2 — ) 1 Su(x2 — O (030, 0)d 2
X1
]. X1 B IX—]_ B a—1 2 /l><1 »
< H”f/Hgoo [FZ()/ IEH(DQ ) (x1 =) Hdz 5 Elj3(2,€)2d?
IX%IX 1 ,
Y S 18 ) =Sl I [ Els 0l
1 (xg—xq)%1 /'Xz )
+ Fz(zx) (20 —1) " Ell3(2,€)]|7d
2 2 X1 X1 a1 1l K%D‘ 1
< 9[|V|£m(J)t{rz<a)/o ]EH(MZ—Z) — (%1 =) ’dH—(sz—l)

(%2 — le)21x:|‘

X sup ||S,x(><2—2)—5a(l><1—Z)HZ—FFZ(“) 2a—1)

1€(0,x1)

In a similar sense,

X X1 2
G < 9tM‘0[1~2(L)/0 EH(Kz—?)%l—(Kl—Z)%lHdZ
20—1 20
X7 2 1 (xp—xq) }
su Su(Xo =) —Sa(x1 =7+
(2&—1) G(OEI)H ( 2 ) ( 1 )H 1—-2(“) (20(—1)

G < 9tMg[r2()/MEH(><zz)"“1(xlz)“—luzdz

+

C'Hlxl
(20 —-1),

1 C (D(zb(l)za:|
sup  [|Sa(xa — ) — Sy —)|I> + ”
e(o,El) || IX( 2 ) IX( 1 )” FZ(D() (le — 1)

&, < 9tMp[r§<&é)/0MEH(><2—z)a1_(K1_2)N1H2d2

200—1 2w
X3 N 2 1 (xp—x7q)
Ga 1) b 1502 =0 =Sl =0 o )

+

Using LDCT, we conclude that the RHS of the above inequalities — 0 as t, — t; — 0.
Thus, Y is equicontinuous.
Step 4: The Monch condition is as follows:
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Set B="20({0} U'¥(B,)). Let us show that (D) = 0, where B is the HMNC. Without
loss of generality, we shall assume that D C Band D = {3"}° . Let¥ =¥ + Y2 + Y3+
Y4, where

(¥13)(x,8) — /Ox(lez)"‘_lSa(x72)[“//(6)5(2,6)d2.
(F23)(x,0) = i [ (=0 Sulx @30, 0) 1.
(F3)(,0) = i /“(x—)“ 18u(x = Do (0,3, 0)dZy )-
(), 0) = i [ [ = 08I0 = 0plas(a, 0N )

Using Hypotheses (H1) and (H2),

U ON) < [ (x = )F 1 Sulx — DB (03", )

< a1 ey sup B O i)
BUCE (x, 0)) < i [ (x = )" Sk — DB 0, 0D

< iy Melleqzen sup AU OY0)
BUCH) 6, OF) < 1 [ (=018 (x — DB O Dz

< e Mol sup U )
U OY) = i [ (=018 0x = 0B(Lplalt, ) DN dy)

iy Ml e sup B O V)

Thus,

27" [
le"( )

+ Mol z ] sugﬁ({a”(bf)}i":l)
X e

Q" sup B({5" (1 £) }121)-

171l o) + Mol oz gy + T2 ep Mol oz r+)

BUH(YS") (%, 0) }al1)

IN

IN

xXeT
So,
B(D) < B(co({0} UY(D)))
= B(¥(D))
= Q"B(D) < B(D)
(D) = 0.

.. J at least one unique mild solution for (1).
O
4. Exponential Stability for FSSEs

We will now establish the exponential stability outcomes by applying the following
additional requirement:
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(H4) For Cp—semigroups 7 (x) and S, (x) with x > 0, there exist M}, M and 6 > 0, s.t
17 ()]l < Mie™®" and [|Sa(x)]| < Mae ™.
Theorem 2. Let (H1)—(H4) hold. Then, 3(x, ¢) is a mild solution of (1) on Z, provided

572 1M3 .

Also, 3y > 0 with
lim sup(~-) log E[l3(1, £) > < —7.

In addition, the average square of the mild solution diminishes exponentially as it
approaches zero.

Proof. Let f > 0 with § < j.

Sety = [51("2“ 1 {[2||"I/||2m + My + ey T?H-1M, + M } —25+2/§] > 0. Consider,

Els(x, 02 < SE\

Ta()30(¢ +/ (x = )" LS (x — O (030, O

n i/ox(x — ) LS (% — D(y 3, 0))d

+ i/“(x ) S (x = Vo (2,32 €))dZa ()
2

n // = ) Sa(x = 0)p(s, 3, €, 1))N(d, diy)

X X o
sttt COR 0(0) | + SR ey [ (o = 0% 2 [ e VR )] 2

IN

X X
+ SMB[ME + o ME + 1] [ (=02 2y [ e VR 5 )P

< 5MEeXUIE 52
5T2a 1M2 B
+ Ty P17 Mgy + M + on ™ MG + M | e m 0,0 P,

Then,

E[3(x, 017 < 5Mie*CIE |30

5720~ 1M2 ) ) 2H 12 2 " 26 2
n W[[ 1170 ) + MG + T 1M +M]/O PR30, 0)[Pd
ROBIE[5(x,0)|2 < 5M2REPIE|30(2)|2

52212
(2a—1)

Using Gronwall’s inequality,

X A
[[2||7/\|£w + M2 + ey T 1M2+M2]/0 2C=PBE|3(2, 0)|?d .

572 M3 5
El3(x,0)|* < Azexp{[ a1) [ 19 |23y + My + o T 1M2+M2] 20 +2p

s A 57-2a—1M2
2CPIIR|5(x, 0> < .Azexp{ l (2“_1)2[[2”7/”500 M2, 4 oy T2 1M2+M2}

d
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where

5720~ 1]\[2
v = [ 2 > 0.

2 2 2 2H—1n /2 2 R
m[l 19 1B gy + M2 + T2 + M2| — 26 + 2B

Therefore, (1) decays exponentially to zero in the mean square with the exponential decay
rate 7.

O

Remark 6. The decay condition in exponential stability has significant practical implications in
real-world systems, particularly in control, quantum dynamics, and engineering applications. It
quarantees that perturbations, noise, or initial excitation will vanish at an exponential rate, which is
useful in quantum decoherence models (e.g., the relaxation of excited states), mechanical systems
(e.g., vibrations dying out), and signal processing filters.

5. Trajectory Controllability for FSSEs
5.1. Concept of Trajectory Control

Chalishajar et al. [44] created the concept of TC, a unique and stronger notion of
controllability. In TC, we want the control that directs the system along a predetermined
trajectory rather than one that leads the supplied system from an initial to a desired final
state. For example, while launching a rocket into orbit, knowing the exact trajectory as
well as the objective destination may be helpful to maximize cost-effectiveness and prevent
collisions. Nonetheless, TC results of FSSEs remain a mystery, which provides fuel for
further research.

In this segment, we study TC for system (11) as follows by employing Gronwall’s
inequality:

Remark 7. Controls are always limited in some way in real-world applications. By assuming that
the values of admissible controls are in a convex and closed cone with the vertex at zero, Klamka [45]
investigated the sufficient conditions for constrained local relative controllability of semilinear
ordinary differential state equations in finite dimensions with delayed controls using a generalized
open-mapping theorem. The restricted complete controllability of first- and second-order systems in
infinite-dimensional space was also demonstrated by Klamka [45]. Our system can be extended for
fractional-order systems, and the TC result can be examined.

Remark 8. TC in quantum mechanics refers to the ability to steer a quantum system’s state along
a desired trajectory over time using external controls (e.g., electromagnetic fields and laser pulses).
While the term is rooted in control theory, it finds growing use in quantum control, a field at the
intersection of quantum physics and systems engineering. Quantum optimal control is finding
optimal pulse sequences to transfer populations between quantum states or to create entanglement.
Example: Controlling spin systems, two-level atoms, or molecules with laser fields.

5.2. Definition, Lemma, and Main Theorem

Here, we provide the TC definition of the system (11), as we know that the control
definition varies from system to system.

Definition 11. Let T be a collection of all trajectories ®(-) defined on T := [0, T| s.t ®(0) = 30
and ®(T) = 31,V X € Z, and } is differentiable a.e. Then, (11) is TC if for any 3 € Z,3 and a
control u € L2(Z,U) s.t the corresponding solution 3(2, £)(-) of (11) holds ®(x) = 3(x) a.e.
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Lemma 6 ([46]). Let B > 0 and d(x) be a locally integrable function on 0 < x < T and q(x)
be a non-negative, non-decreasing continuous function on 0 < x < T, q(x) < ¢, where cis a
constant. Also, il(x) < d(x) +q(x) [y (x — )P H(2)dr, then

() <ae) + [ 37 CCIE (ot o< <
n=1

In particular, when a(x) = 0, then fi(x) =0, ¥V 0 < x < T.
Let us now consider system (1) with the control term Co(x, £), as shown below:
1
LE) (00 83k, ) = (030, 0) + Co6,0) + @ (x,3(x, 0) +0(x,3(x, 0))dZyg ()

+ [ e300, )Nt dy), €€ T x € [0,T) =T,
3(0,0) = (), Lel (11)

The mild solution of (11) is as follows:
30,6 = Ta(x)s0(£) + Co(x, ) +/ Y18, (x — )Y ()32, 0)d
i [ =Sk = D@30, )1
[ (=0 S (¢ = 0025 0)dZ ()
[T =08 (= 0,50 6 ) S ). 12)
Theorem 3. (H1)~(H4) assure the TC of (12) on [0, T].
Proof. Let ®(x, £) be a trajectory on . Let us choose the feedback control as follows:
o(x,0) = c—l[—1(3;—“q>)(><,e)+m(»<,5)—ry(z)@(x,z)—w(x,@(x,@)
= o, @0, 0)dZu () = [ pl, @, 0))N(dc ).
Thus, (11) implies the following;
%(J}[‘"CD)(M,K)—ACD(K,E) - [7/(€)d>(><,€)+{—1(31x"‘¢)(><,£)+A<I>(><,£)
—(O)B(x, ) — @(x, D(x,0)) — o(x, (x, £))dZy (1)
= [, @, 0N )|
+ @(%5(%,@)+U(D<15(D</€))dZH(2)+/gp(xfz(xff)/ﬂ)N(d%dﬁ)-
Setting o(x, ) = 3(x,£) —P(x, ),
! [(JL "‘3)(1><,£) - (3}5%)@%)} — [A3(x, ) — AD(x, 0)]

=7 (O)[5(x, £) = (x, 0)] + [@(x,3(x,£)) — @(x, D(x,£))]
+ (o (50, £)) — o (<, D(x, £))]dZy ()

+ [ Io0¢,5(x, 00,) = p(¢, D, £), ) i(dx, i)
Q(x, 0) =
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Thus,
o(x,0) = /le(x RS (= ) (O[30, £) — (1, )]
b [T =0T (¢ = 0 [0, 0) — @, @0, 0)]d 2
+ 1/“(>< D18 (x — ) [ (3, 0)) — (0, D, 0))dZa ()]
i [T =S = 01030, ) — o0, B0, )N i),
X 2
Elo(x,0)|> < 4E /0 (x = )" 1Su(x =) (O)[3(1,£) — P, £)]d 2
X 2
+ 4E 1/0 ([>< —2)‘1718&(% _2) [@(?fé(lre)) —@(2,(1)(2,6))](12
X 2
+ 4E i/ (x = )" 1Sa(x =) [e(1,3(0,0)) — (2, (2, £))]dZy ()
R 2
b 4Bi 7] (=S = 010030, 0, ) — o0, D00, )N i)
20 1 X
< Mmiw) =02 281,00, 0P
gT2e-1MZ ¥ .
+ m/{) (x =) 2E||3(2,€)—d>(2,€)||2d2
c 2HA+20—27 /12 X
+ 8(72{;_;1*2(01?/)%/0 (x =)™ 2E[3,€) — @, )] d
gr2a—1p2 »
b ey (<= 0R Bl 0 - 0 0]
< & [ Bl
where &* %[VW/H%‘, + M2, + cyT?HMZ +M2}
Using Lemma 6,
Ello(x,€)||5c = 0, which concludes that 3(ix, ¢) = ®(x,¢) a.e.
Hence, (11) is TC on Z.
O

Remark 9. Computational Tractability of Implementing Controls in Real Systems: In real systems,
the computational tractability of implementing control strategies hinges on the balance between
model complexity and real-time performance requirements. While advanced control laws (e.g., model
predictive control, fractional-order, or sliding mode control) offer high precision and robustness, they
often involve nonlinear equations, memory effects, or optimization problems that are computationally
intensive. In practice, nonlinear and fractional-order controls, though theoretically powerful, may
become intractable in high-dimensional or fast-evolving systems without significant simplification or
approximation. Hardware constraints, communication delays, and the need for fast sampling rates
further limit the feasibility of complex control laws in many industrial or robotic applications. Thus,
achieving computational feasibility often requires model reduction, efficient numerical algorithms,
or approximate control schemes that preserve key dynamics while remaining implementable on
available platforms.
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6. Comprehensive Analysis Between Exact and Numerical Solutions
6.1. Theoretical Example for FSSEs

The theoretical example of our study is demonstrated as follows.

Consider,
1 u 6_71D<+D< .
F(315) 00 = 830, 0) = 0 (03(0,0) + o sina(x, ) + o (x, ()
6_71D<+D<
+ prp— cos3(x,0)dZy (x)
+ /y(l+€7D<)C053(D<,€)17N(dl><,df]), te], x €(0,T],
3(0,6) = 30(0), L€, (13)

where % <a<1,31"%is the (1 — a)-order R-L fractional operator. Let 1 > 0 and 7y, > 0.

Let H = # = (L£2(J),]]]). Let A generate eigenvalues —n?, n € N, with associated

eigenfunctions e, () = v/2/7tsin(n). The set {e, : n € N} is an orthonormal basis of #.
Define 3(x )¢ = 3(x, ¢) and the nonlinear functions as follows:

3771'><+>< .
(ﬂ([x,j([x,g)) = WSIng(K,@),
6771'><+D<
o(x,5(%,€)dZy(x) = WCOSj(K,f)dZH(IX),
[, 00,0, ) = [ (1 e cos(, (i, ),

and
Co(x,0) = Co(x,{).

The above nonlinear functions satisfy the conditions (H1)-(H4). Thus, all the
hypotheses of Theorem 1 are satisfied. So, the system (1) has a mild solution. We choose
the particular values of the given parameters as follows: T = %, n = %, M, = 0.003 with
[[t7]] < 1.

27

ol (&)
0.75

= 027(;)1?()075) [sin(0.5) +(0.5)205-1 ¢05(0.5) + (1 + e*0-5)]

= 0.7459 < 1.

[Me + T* ey My + M, |

Further, the following numerical values fulfill the condition of Theorem 2:

5T 1M
(20 —1)
= 5<o&?f§j775510'§032 [(sin(0.5)) + (0.5)2097 (cos(0.5))2 + (1 + ¢~ 0%)2]

= 04381 < 1.

{Mzw Foey TV 4 Mﬂ

The mild solution (1) decays exponentially to zero in the mean square.

6.2. Numerical Simulation for FSSEs

This subsection studies the simulation of the system (13) numerically with detailed
justification. By adopting this integrated approach, we create a cohesive narrative that
effectively bridges theory and practice, enhancing the clarity and impact of our research.



Symmetry 2025,17,1173

21 of 27

The numerical simulation of the fractional stochastic Schrodinger equation involves
using various techniques to approximate the solutions to this complex equation, which
describes quantum systems influenced by both fractional derivatives and random noise.
These simulations are crucial for understanding the behavior of quantum systems in non-
standard environments, such as those with fractal or noisy potentials.

Researchers have numerically simulated the system’s accuracy in a number of methods
(refer to [13] for more details). The normalized Bernstein wavelets method will be applied
in this part. Fractional partial differential Equation (13) is solved using the fractional order
integration and Bernstein wavelets operating matrices of integration. The efficiency of the
suggested approach is demonstrated using the root mean square error L, and maximum
absolute error L in the event of having the exact solution. The boundary conditions are
automatically taken into account in the proposed method. Additionally, a normalized
Bernstein wavelet-based evaluation of the error of function approximation is employed.
The Legendre wavelet approach and the Bernstein wavelet method are contrasted. Every
calculation related to the examples is carried out using Mathematica 9.1 running on a
Windows 10 PC with 4 GHz processing speed and 4 GB of DDR3 memory. For convenience,
we assume that 7 = X.

The following table shows the root mean square error L, and maximum absolute error
Lo in some nodes (x, X ) € [0, 1]. To show the efficiency of this method, the absolute error
obtained by the present method is compared with the Legendre wavelet method [47] in
the Table below. Figures 1 and 2 represent the error analysis for a = 0.50, 0.90, and 1.00,
respectively. We compare the numerical solution with the exact solution for « = 0.50, 0.90,
and 1.00 in Figures 3-5, respectively. It is evident from last two rows of Table below and
Figures 3-5 that the proposed method is accurate for solving this kind of problem, and the
obtained approximate solution is very close to the exact one.

t = x (in Seconds)

0.1 0.3 0.5 0.7 0.9 1.0

Loo
Ly
Legendre wavelet
method [47]
Bernstein wavelet method

111 x 1071 222x1071 199x 1071 288x10"1° 555x1071° 222x 1016
378 x 10717 1.02x1071 643x10710 907 x10716 1.73x107® 641 x10°V

490x107° 147 x107% 228 x10°° 1.17 6.45 x 1070 0.00

111 x 1071 222%x1071 199x 1071 555x1071 222x10716 222 x 1016

Three-dimensional real and imaginary traveling wave solutions for Equation (13) are
depicted as follows: real traveling wave solutions in Figure 1 and imaginary traveling wave
solutions in Figure 2. The mild solution diminishes exponentially as it approaches zero
(kindly refer to Table 1). The control goes along the prescribed trajectory with absolutely
small errors for different fractional values of &, as described within the interval [0, 1].
This analysis of numerical simulation justifies the theory provided in Figures 3-5. The
comparison of Figures 3-5 clearly shows that as the value of & approaches 1, the error
reduces and the approximations move closer together.

Figures 1 and 2 illustrate the differences in the 3D particle distribution between the FSE
with the Dirac delta function and the classical one. This indicates that peaks appear in the
distribution; namely, a gap appears at y = 0 in Figures 1 and 2. The reason is that diffusion
only occurs along the x-axis. In addition, we see that the particle distribution in Figures 3-5
is symmetric about the x-axis and y-axis because the velocity V(x) only has an effect on
the distribution at y = 0 for quantum diffusion. Figure 3(left) is similar to a waveform,
Figure 3(right), because of the influence of the singularity function in 3D. Figure 4 fully
demonstrates the influence of the singularity function on the FSE with changing time. The
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larger time parameter x leads to faster particle diffusion. A smaller parameter « produces
a stronger wave characteristic. Furthermore, a larger fractional parameter « results in faster
particle diffusion. The mass parameter is a proportional constant between the momentum
and energy, which is used to describe the mass of the quantum. A larger mass produces a
weaker wave characteristic. Larger mass indicates faster diffusion.

Error between Numerical and Exact Solution

0.4

04
0.2

0.2

Space () o o Time (¢

Figure 2. Error analysis of an exact and numerical solution: a = 0.50. Here, H = X and t = x in
seconds: real traveling wave solutions.

Error between Numerical and Exact Solution

Error between Numerical and Exact Solution
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Figure 3. Error analysis & = 0.50 (left) and error analysis & = 0.90 (right). Here, H = X and ¢ = x
in seconds.

The trapezoid rule, as implemented by the MATLAB function trapz.m, was used
to approximate the integral term at each discretization point. The Brownian term 4B is
normally distributed with mean zero and variance d:. The fractional Brownian term dZy
is normally distributed with mean zero and variance dix?, where  is the Rossenblatt
parameter. The delayed derivative terms were approximated by difference derivatives on
the mesh as well. One of the more challenging parts of approximating numerical solutions
to this equation is the delay terms inside both the time and space derivatives. In order to
apply the finite difference formulas, the derivative operator must be applied to these terms
and formulas derived.

In the included simulations (Figures 4—6), the following parameters were used. We
used n = 2 and 20 points in each spatial dimension for a total of 400 spatial points at each
timestep. We used 5000 timesteps, so dx = 0.0003. The Rossenblatt parameter & = 0.7.
Figures 2 and 3 show the function at the beginning, at x = 0, and a third of the way
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through the simulation. Figures 46 show the simulation at roughly two-thirds of the way
through the simulation and at the end. The Poisson jump intensity A (sometimes called the
rate or arrival rate) with respect to time x is quite significant, occurring at specific points
in time in Figures 4-6. It defines the expected number of jumps per unit of time. Also,
Figures 3-6 suggest that the dispersion rate of the wavefunction is inversely proportional
to mass: heavier particles spread more slowly and lighter particles (like electrons) exhibit
more pronounced quantum spreading. This affects how quickly the probability distribution
for position becomes wider over time.

Numerical Solution Exact Solution
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4.5
n 5
4
= = 4
k3 X
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3 3 3.5
2 3
2
9 25
! 2
1 1
1
0.5 0.5 1.5
0.5 0.5
. ace . 1
Space ) 7 Time (t) Space () 7 Time (t)

Figure 4. Comparison of a control for the exact and numerical solutions for the order a4 = 0.50 in

a state.
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Figure 5. Comparison of a control for the exact and numerical solutions for the order a = 0.90 in
a state.



Symmetry 2025, 17,1173

24 of 27
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Figure 6. Comparison of a control for the exact and numerical solutions for the order « = 1.00 in
a state.

Since this is an optimization problem over two spatial dimensions and one time
dimension, it can quickly become computationally infeasible. We used five points in each
spatial dimension and 10 points in the time dimension, which still left us with 250 total
control points to optimize for. In the first stage of optimization, we used the Legendre
wavelet algorithm, as implemented in the MATLAB function. Figure 4 contains the error of
the function before the first stage of optimization began at two time points. Note that the
order of error is approximately 1. Figure 5 contains the error after 200,000 iterations of the
Bernstein wavelet algorithm were applied. Note that the order magnitude is approximately
1075, a significant improvement over Figure 4. Figure 6 shows the error after 5000 iterations
of the Bernstein wavelet algorithm. Note that the order of magnitude is approximately
1072, which is much better than Figure 4. Thus, illustrating the example equation can be
made to follow a given trajectory, using optimization to determine the appropriate control.

Remark 10. 10 estimate computational cost, we break the problem down into the following components:

Table 1. Steps to estimate the computational cost of a Schrodinger stochastic control system.

Step What to Do

Define the model’s resolution, i.e., the number of spatial points Ny, time steps

1 N, and stochastic samples N;.

” Identify the numerical method used (e.g., finite differences, Bernstein wavelets,
and spectral methods).

3 Include the effect of control logic, especially if it involves feedback, delay, or
adaptive terms.

4 Benchmark and validate performance on your actual hardware using profiling

tools or runtime measurement.
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7. Conclusions

The above investigation focused on the existence, uniqueness, time complexity, and
exponential stability of FSSEs that incorporate complex potentials and Poisson jumps. The
primary findings are founded on the principles of stochastic analysis, fractional calculus,
and Monch FPT. Additionally, the results demonstrate mean square exponential stability
along with the corresponding time complexity. In this work, we used the weaker notion
of the fractional derivative called the R-L derivative. The current study explored FSSEs
using R-L fractional derivatives, which offer certain mathematical conveniences but are
also known to impose restrictions due to their non-local initial condition requirements. The
R-L fractional derivative plays a meaningful role in modeling the non-locality of quantum
mechanics, especially in generalized quantum theories and open quantum systems where
classical Schrodinger dynamics are extended to include memory, dissipation, or anomalous
transport. Non-locality refers to correlations or entanglement between spatially separated
particles. R-L derivatives help describe non-local environments or long-range interactions
between a system and its reservoir.

An interesting extension of this work would be to consider generalized fractional
derivatives, particularly the Hilfer derivative, which interpolates between the R-L and
Caputo derivatives. The Hilfer framework allows for greater modeling flexibility and
can bridge the gap between different fractional orders and initial condition formulations.
This direction may open up avenues for the following: Comparative analysis of solution
behavior under different fractional operators; Broader classes of initial-boundary value
problems; More physically meaningful interpretations in memory-driven or anomalously
diffusive quantum systems.

Incorporating Hilfer-type derivatives could enhance the robustness of the
controllability and stability results and potentially unify various fractional approaches
under a more generalized theory. The system introduced can be extended further to
include a fractional Schrodinger equation that integrates mixed fBm with both
instantaneous and non-instantaneous impulses. The Clarke subdifferential approach may
facilitate further exploration of the topic. The role of noise in quantum systems is still
debated, especially in the context of open quantum systems. The numerical treatment of
fractional derivatives and stochastic terms can be computationally expensive. Standard
numerical methods may not work efficiently, requiring fractional-order adaptations. The
memory effects induced by fractional derivatives may require non-traditional
boundary conditions.
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