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Abstract: The highly contagious respiratory virus COVID-19 has profoundly influenced the global
economy and public health. It has been discovered that the RNA-dependent RNA polymerase catalyzes
the synthesis of viral RNA and plays an important role in the replication cycle of the COVID-19 virus.
The current study focused on the virtual screening of selected isoflavones, flavonols, and chalcones,
which inhibit the enzyme RNA-dependent RNA polymerase. Ligand molecules were evaluated for
ADMET activity using SwissADME. Docking studies were performed using AutoDock Vina. The
optimized structures and molecular electrostatic potential surfaces were predicted by DFT analysis
using B3LYP. The docking scores ranged from —7.0 to -8.7 kcal/mol. Malonyldaidzin had the highest
binding affinity (—8.7 kcal/mol) compared to the control Remdisivir (—7.0 kcal/mol). DFT analysis
showed that the band energy gaps and ionization potentials of the chosen flavonoids ranged from 0.14
to 0.16 eV and 0.20 to 0.21 eV, respectively, compared to remdesivir, which exhibited an energy gap
of 0.17 eV and ionization potential of 0.22 eV, indicating better reactivity of the molecules. The results
show that the chosen flavonoids may inhibit or block other protein pathways in SARS-CoV-2 and could
capitalize on improved targeted delivery approaches.

Keywords: COVID-19; RNA-dependent RNA polymerase; molecular docking; virtual screening;
DFT; flavonoids.
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1. Introduction

The COVID-19 pandemic was caused by the outbreak of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), which is genetically related to severe acute
respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome
coronavirus (MERS-CoV). Amazingly, the epidemiology of COVID-19 is also similar to that
of SARS-CoV [1]. Studies have suggested that the natural hosts for SARS-CoV maybe bats
and civets as intermediate hosts. Bats may be the main route of human transmission of the virus
[2]. The signs and symptoms of this infection range from asymptomatic to acute respiratory.
Like the Nipah virus, the incubation period ranged from 4 to 14 days [3]. The symptoms of this
disease are high fever, dry cough, chest pain, headache, dizziness, shortness of breath, nausea,
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vomiting, and diarrhea in humans [4]. COVID-19 can be detected using RT-PCR, a qualitative
test [5].

RNA-dependent RNA polymerase (RdRp) is an important drug target for SARS-CoV-
2 because it is vital for the virus's replication cycle by generating multiple copies of viral RNA
[6]. However, no sequence or structural homolog of coronavirus RdRp has been found in
humans; therefore, developing potent inhibitors of coronavirus RdRp could be a potential
therapeutic strategy without the risk of affecting human polymerases [7].

Several antiviral drugs have been developed to target human immunodeficiency virus
(HIV), Ebola virus, hepatitis C virus (HCV), and Marburg virus, and they also target SARS-
CoV-2 RdRp [8]. Recent studies have suggested that two known antiviral drugs, remdesivir
and favipiravir, are effective alternatives for treating COVID-19, but their safety and effects
are yet to be understood [9,10].

Plant bioactive compounds such as isoflavones, flavonols, and chalcones, which are
prevalent in plant tissues and have antioxidant and antiviral effects, can potentially inhibit the
replication of viruses. Flavonoids and their derivatives may be prospective chemicals for
subsequent clinical investigations to improve treatment efficacy against coronavirus infection
because of their pleiotropic properties and lack of systemic toxicity [11].

In structure-based drug design, molecular docking has become an important tool and is
most frequently used to predict the binding conformation of small ligands to desired target
molecules [12,13]. The present study discusses the molecular interactions between flavonoid-
derived compounds [14] and the RdRp of coronavirus, providing better insights into drug
mechanisms and disease pathology.

2. Materials and Methods

2.1. Preparation of the protein.

The three-dimensional (3D) structure of SARS-CoV-2 RNA-dependent RNA
polymerase [RdRp] [PDB ID: 7BV2] was retrieved from the Protein Data Bank (http://www.
rcsb.org) [15]. The protein structure was prepared by removing water molecules and adding
polar hydrogens and Kollmann charges using AutoDock Tools. The protein was then saved in
PDBQT format for molecular docking.

2.2. Preparation of the ligands.

The structures of the isoflavone, flavonol, and chalcone ligands were retrieved from
PubChem (www.pubchem.ncbi.nlm.nih.gov) in the Structure Data Format (SDF). The
sequences were subsequently converted to PDB format with the help of Open Babel software
[16] and prepared in docking format using AutoDock Tools.

2.3. ADMET analysis.

The SMILES notations of the ligand molecules were downloaded from the PubChem
database and evaluated for their absorption, distribution, metabolism, excretion, and toxicity
(ADMET) properties and other pharmacokinetic and pharmacodynamic properties of the
ligands using the online server SwissADME (http://www.swissadme.ch/).
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2.4. Docking studies using AutoDock Vina.

Docking was performed using AutoDock Vina through the PyRx program. The RdRp
of coronavirus was docked against isoflavone, flavonol, and chalcone ligands, and those with
good docking scores were taken for further analysis. Based on the active site of the target, the
grid centers were adjusted to 96.06, 93.00, and 93.92 A for the X, Y, and Z axes, respectively,
with 0.375 A spacing. The X, Y, and Z dimensions of the grid were set to 43 x 45 x 44. The
ligand was docked to the target protein, and the best-docked pose was saved. Discovery Studio
Visualizer software [17] was used to visualize the docked results, and PyMol was used to
analyze the protein-ligand interactions.

2.5. Density-functional theory analysis and reactivity study.

The phytochemicals' Lowest Unoccupied Molecular Orbital (LUMO) and Highest
Occupied Molecular Orbital (HOMO) energies were determined using the ORCA 5.0 program,
and the Becke3-Lee-Yang-Parr (B3LYP) hybrid functional exchange-correlation of DFT was
used [18]. The molecular electrostatic potential map and energies of the compounds were
obtained from the optimized geometry. Avogadro version 1.2 was used for visualization.

3. Results

3.1. ADMET properties of flavonoid-derived compounds screened against the RdRp of SARS-
CoV-2.

In silico toxicity assessment, a compound is analyzed and predicted using
computational methods. Determination of the toxicity of a ligand is important in drug design.
Toxicity prediction is necessary to determine the harmful effects of ligands on humans [19].
The flavonoid-derived compounds were subjected to ADMET analysis, and the results for 11
molecules and controls were chosen for further study; the results are given in Table 1.

3.2. Virtual screening of flavonoid-derived compounds.

Molecular docking can be an efficient computational tool for understanding the role of
intermolecular interactions[20]. Molecular docking investigations were carried out using
AutoDock Vina here to understand the interaction and binding mode of isoflavone, flavonol,
and chalcone with the active site of the CoV RdRp. Docking scores in Kcal/mole were obtained
after docking the protein with the ligands. This value represents the affinity of the target protein
RdRp for the ligands. Negative docking scores indicate stronger interactions within the receptor
protein. Pi-alkyl interactions, along with conventional hydrogen bonds, were found in almost
all the derivatives. Table 2 shows the docking scores of 11 molecules and controls for the RdRp
and amino acids involved in the interactions.

The docking scores for all the compounds ranged from —7.0 to -8.7 kcal/mol (Table 2).
Malonyldaidzin had the highest binding affinity (—8.7 kcal/mol), and all the other compounds
exhibited greater binding affinities than did the control Remdisivir (—7.0 kcal/mol). The 2D
and 3D representations of the best binding ligands generated using Discovery Studio Visualizer
(Ver 2011) and PyMol are shown in Figure 1.
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Table 2. Docking scores of RNA-dependent RNA polymerase with flavonoid-derived compounds.

S| Dockin Interacting amino acids
NO‘ Ligand scoreg Conventional Carbon Pi-Pi Pi-alkyl
' hydrogen bonds hydrogen bonds | Tshaped y
1 Remdisivir -7 SER318 PRO461
(Control)
2 Astragalin -1.4 - - -
3 Daidzin g4 | ARG, AONGZS, SER318 PHE39S | 02
4 Dihydromyricetin -7.6 - - -
- VAL315, ARG349, PRO323,
5 Genistin -8.3 GLU350, ASN628 SER318 PHE396 PRO677
. SER501, ASN543,
6 Hyperoside -7.4 VALS560, THR565 VAL560 VAL557
7 Isoquercitrin 83 SER318, THR319, PROA461,
d ' ARG349, THR394 PRO677
. . ARG349,
8 Isosalipurposide -8 ARG457, PRO677 PROG77
VAL315, SER318, PRO323
9 Malonyldaidzin -8.7 ARG349, PRO461, THR319 PHE396 PR06771
ASN628
10 Myricitrin 77 | ARCRS, LYSeaL, TYR619 PRS2,
PRO323,
11 Puerarin -7.8 ARG249, ARG349 ARG349,
PRO461
12 Quercitrin -7.8 ARGSSSESF,QI7_9\28621, TYR619 FIR%%%
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Figure 1. 2D representations of the compounds used in the present study (a) Remdisivir (control); (b)
Astragalin; (c) daidzin; (d) dihydromyricetin; (€) genistin; (f) hyperoside; (g) isoquercitrin; (h) isosalipurposide;
(i) malonyldaidzin; (j) myricitrin; (k) puerarin; (1) quercitrin.

Malonyldaidzin formed five hydrogen bonds with amino acids VAL315, SER318,
ARG349, PRO461, and ASN628 of the target. Two Pi-alkyl interactions with amino acids
PRO323 and PRO677 and one Pi-Pi T-shaped interaction with amino acid PHE396 were also
observed, as shown in Figure 2.

https://nanobioletters.com/ 50f 12


https://doi.org/10.33263/LIANBS120.000
https://nanobioletters.com/

https://doi.org/10.33263/LIANBS120.000

i
A453

3 PRO A
W A323 PHE
&# %335

[ i T-shaped

[ Pioakyt

Bl nfavorable Donor-Donor

VAL
A315

6L o
A350 ﬁ
& ASN

THR
A462

Figure 2. Docked conformations of the compounds in the active site of RdRp. (a) 3D representation of
malonyldaidzin; (b) 2D representation of malonyldaidzin; (c) 3D representation of remdesivir; (d) 2D
representation of remdesivir.

The recommended drug remdesivir formed only one hydrogen bond with SER318,
while one unfavorable donor—donor interaction with ASN628 was also observed, which
accounts for its low binding affinity.
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Figure 3. The optimized molecular structures, HOMOs, LUMOs, and molecular electrostatic potential (MEP)
surfaces of the compounds.
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3.3. Density-functional theory analysis for optimized structures.

Based on quantum mechanistic evaluation, the reactivity of the efficiently docked
compounds was further examined utilizing molecular orbital descriptors, such as LUMO and
HOMO energies. A DFT study was carried out to evaluate the reactivity parameters of
malonyldaidzin, daidzin, genistin, isoquercitrin, and the control drug Remdisivir using
bandgaps of molecular orbital energies. The obtained HOMO and LUMO orbitals for the
selected compounds are presented in Figure 3, and their energy, EHOMO, and ELUMO values
are listed in Table 3.

The following descriptors were calculated based on the energy of the HOMO and
LUMO: AEgap = (ELUMO - EHOMO)); ionization potential; (I = - EHOMO); electron affinity;
(A = - ELUMO); electronegativity; (y = (1 + A)/2)); global hardness; (7 = (I - A)/2)); and
softness (S = 1/n) [21].

Table 3. The various quantum chemical parameters of the isolated compounds.

Malonyldaidzin Daidzin Genistin Isoquercitrin | Remdesivir

Eromo (eV) -0.2194 -0.212 -0.2055 -0.2227 -0.2285
ELumo (eV) -0.0721 -0.0578 -0.0438 -0.0758 -0.0493
AEgap (V) 0.1473 0.1542 0.1617 0.1469 0.1792

I (eV) 0.2194 0.212 0.2055 0.2227 0.2285

A (eV) 0.0721 0.0578 0.0438 0.0758 0.0493

7 (eV) 0.14575 0.1349 0.12465 0.14925 0.1389

U (eV) -0.14575 -0.1349 -0.12465 -0.14925 -0.1389

1 (eV) 0.07365 0.0771 0.08085 0.07345 0.0896

S(eV)? 13.58 12.97 12.37 13.61 11.16

4. Discussion

Despite modest progress in developing antiviral vaccines and widespread population
immunization campaigns, the number of COVID-19 cases keeps rising due to the introduction
of new SARS-CoV-2 mutations. The development of medications that can inhibit or halt the
primary processes of coronavirus SARS-CoV-2 reproduction is critically needed [22].

RdRp catalyzes the replication of RNA with RNA as the template in all RNA viruses
and some eukaryotes, and these RNAs are reported to encode this enzyme [23]. Being obligate
intracellular parasites, viruses cannot survive independently outside cells, as they require live
cells to translate mMRNAs to produce proteins and replicate. Thus, any intervention in mMRNA
translation would likely inhibit viral replication, thereby spreading and evolving the virus [24].

Medicinal plants have been utilized as a source of natural drugs, including antiviral
agents, for a long time despite the preoccupation with synthetic chemistry. Additionally,
ethnopharmacological-based studies and traditional medicine serve as templates for the design
and synthesis of novel substances [25].

Flavonoids are a class of safe phytochemicals commonly abundant in several fruits and
vegetables. They offer a range of pharmacological activities, including antiviral effects, when
consumed as a diet. These compounds have been demonstrated to target essential stages of the
viral life cycle, thus inhibiting viral pathogenesis [26]. For this reason, flavonoids have
attracted much attention in recent years because of their fruitful effects during COVID-19
infection. Flavonoids and their derivatives exhibit structural diversity that contributes to their
versatile biological benefits, such as anti-inflammatory, neuroprotective, and antioxidative
effects, as well as antiviral properties [27].
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Several studies have even exploited the structure-activity relationship of natural
flavonoids against SARS-CoV-2 proteins [28]. These compounds can also exert antiviral
activity directly, where the virus is directly affected by flavonoids, or indirectly, where
flavonoids improve host defense mechanisms against viral infections [29, 30].

An earlier study revealed that quercetin-33-O-D-glucoside inhibited the envelope
proteins of the Ebola virus and its replication [31]. Quercetin inhibited the replicon system of
the Chikungunya virus by blocking its attachment to host cells [32]. Epigallocatechin gallate
(EGCQG) inhibited the entry of the Zika virus by blocking envelope proteins [33]. Silymarin
inhibited replication by targeting the viral RNA synthesis process of influenza virus [34].
Naringenin inhibited secretion from cells infected with hepatitis C virus [35].
Dihydromyricetin targets HIN1 virus by blocking viral surface protein attachment to host cells
[36]. Epigallocatechin gallate (EGCG) and theaflavin inhibited the main protease of SARS-
CoV-2 [37].

The structure of SARS-CoV-2, having an overall arrangement similar to that of SARS-
CoV, the apo RdRp complex, was reported to contain one nspl2, one nsp7, and two nsp8
proteins [38]. The nsp12 protein also contains an N-terminal 3 hairpin comprising residues 31
to 50 and an extended nidovirus RdRp-associated nucleotidyl transferase (NiRAN) domain
comprising residues 115 to 250 [39]. This protein has seven helices and three B strands [38].
The NiRAN domain was observed as an interface domain (residues 251 to 365) with three
helices and five B strands connecting the RdARp domain (residues 366 to 920). In our study, we
found that the compound Malonyldaidzin formed hydrogen bonds with the amino acids
VAL315, SER318, and ARG349 of the interface domain and PRO461 and ASN628 of the
interface domain of the RdRp target.

Zandi et al. (2021) [40] evaluated the antiviral effect of the flavonoids baicalin and
baicalein by targeting RdRp in Vero CCL-81 cells. In silico evaluations of these two
compounds revealed that they had different interaction sites and exhibited greater affinity for
RdRp than for remdesivir. In another study, MDCK cells infected with influenza viruses A and
B were treated with quercetin-7-O-glucoside (Q7G) and oseltamivir as standards and molecular
docking revealed that Q7G interacts effectively with the PB2 subunit of viral RNA polymerase
[41].

In the present study, virtual screening of isoflavones, flavonols, and chalcones was
carried out to identify compounds that interfere with the RNA replication of SARS-CoV-2 by
targeting RdRp and could be used as possible prophylactic agents to prevent SARS-CoV-2
infection. Initially, flavonoid-derived compounds were retrieved and subjected to ADMET
analysis, where their toxicity, carcinogenicity, and drug-like properties were analyzed. The
pharmacokinetic profile determines the therapeutic actions of the drugs. Molecules'
lipophilicity, hydrophilicity, and bioavailability play critical roles in being considered
compounds as therapeutics [42]. Among the 11 compounds that passed the ADME, the
compounds malonyldaidzin, daidzin, genistin, and isoquercitrin were found to interact better
than the control Remdesivir. DFT analysis was carried out on these molecules to determine
their reactivity with the protein RdRp.

The frontier molecular orbital (FMO) concept describes organic reaction processes and
is especially relevant in investigating interactions between drugs and their receptors [43]. The
band energy gap (AE) was calculated using the LUMO and HOMO energies, which represent
the reactivity of a molecule. The band energy gaps were calculated with the objective of having
a direct correlation with compound reactivity because lower band energy gaps indicate stronger
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reactivity. The chemical reactivity of molecules is also characterized by a descriptor called the
ionization energy, and lower values of this energy correspond to stronger chemical reactivity
[44, 45]. The band energy gaps and ionization potentials of the chosen flavonoids ranged from
0.14 to 0.16 eV and 0.20 to 0.21 eV, respectively, compared to those of the well-known
antiviral medication Remdisivir, which has an energy gap of 0.17 eV and ionization potential
of 0.22 eV. These results show that the inhibitors have a considerable affinity for the target
proteins and contribute to their high reactivity.

Global softness (S) is the inverse of a molecule's ability to take up electrons, whereas
global hardness (1) indicates the degree of resistance to distortion of the electron cloud of
molecules [43]. By definition, soft molecules have a low bandgap and may move electrons
more readily than hard molecules, increasing their reactivity. A higher softness ranging from
12.3 to 13.6 (eV)-1 compared to 11.1 (eV)-1 for remdesivir indicates greater reactivity of the
selected flavonoids.

5. Conclusions

With the increasing incidence of disease transmission, ethical and clinical trials are
posing significant obstacles to COVID-19 treatment. Currently, antiviral drugs are
recommended for patients to combat COVID-19 despite alternative treatment options being
investigated. Recent studies have started using various natural compounds and computational
methods to identify new drug targets. An in silico approach was used as a cost-effective
approach, and flavonoids and their derivatives were found to target the binding sites of SARS-
CoV viral proteins. Highly conserved domains and structurally significant binding sites within
RdRp are expected to accomplish this goal.

Additionally, the DFT results revealed that, compared with remdesivir, selected
flavonoids have better bioactivity and chemical reactivity and considerable intramolecular
charge transfer between electron-donor and electron-acceptor groups and might be powerful
candidates for inhibiting or blocking other protein pathways in SARS-CoV-2. A synergistic
combination of flavonoids with conventional drugs would also be highly important. However,
further in vitro and in vivo studies and clinical trials are needed for additional in-depth research.
Collaborative studies across disciplines examining efficient and effective flavonoid-derived
compounds could capitalize on improved targeted delivery approaches.
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