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Abstract: In accordance to the World Health Organization (WHO), various pulmonary diseases cause thousands of 

deaths annually. The early diagnosis is required to lessen the mortality rate. For this reason, A Convolutional Neural 

Network (CNN)-based Lung Disease (LD) detection system is developed to classify segregated lung sections into 

various pulmonary diseases types. However, epistemic uncertainty in the scanned images affecting the performance 

of detection classifiers.  Hence, in this paper, a multi-modal approach is proposed to solve the epistemic uncertainty 

issue and provides a reliable solution for rapid detection of various LD types from CXR images. In this method, CT 

images are additionally used to improve model’s performance as it contains detailed information that might be 

exploited to provide efficient results. Initially, the collected images are segmented using U-Net model to get enhanced 

lung Region of Interest (ROIs). Then ResNet50, DenseNet121, InceptionResNetV2 and XceptionV3 are used to 

hierarchically extract informative and discriminative features from collected CXR and CT images. The retrieved deep 

features are fed into the Ensemble-Convolutional Long Short Term Memory with Extreme Machine Learning (E-

conLSTM-ELM) to minimize the computational time and increase the accuracy. Moreover, Transfer Learning (TL) 

model is employed to learn the weight of the E-conLSTM-ELM to exchange the knowledge between features and 

classes relation among CXR and CT images. Also, the domain adaptation approach is a variant of TL model that relies 

on employing similar datasets for a shared learning problem. This adaption strategy reduces the domain shift (data 

dispersion) using Maximum Mean Discrepancy (MMD). The shared semantic features from CT images through TL 

improve the in-depth learning of softmax layer to classify different LD types. The proposed work is simply named as 

Convolutional LD Scan (CovLscan) framework The test outcomes reveal that the CovLscan model accomplishes an 

overall accuracy of 95.46% and 96.15% on the collected ChestX-ray8 and NIH-CXR datasets, which is higher than 

the existing models like Automated Hierarchical Deep Learning based LD Diagnosis(AHDL-LDD), EfficientNet 

version2-Medium (EfficientNet v2-M), Lung diseases prediction Network22(LungNet22), Chest tract disorder 

prediction using Dilated Convolutional Network(CDCNet) and Auction-Based Optimization Algorithm-CNN 

(ABOA-CNN). 
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1. Introduction 

Pulmonary illnesses, often known as respiratory 

disorders, have a significant effect on the bronchi and 

other pulmonary tissues [1]. Examples include 

pneumonia, TB and Coronavirus Disease 2019 

(COVID-19). According to the Federation of Global 

Pulmonary Communities, 334 million people 

worldwide have asthma, and 1.4 million die each year 

from TB [2]. The COVID-19 pandemic affected 

every country in the globe, infecting millions and 

causing damage on medical facilities [3]. Respiratory 

disorders are the leading cause of death globally. 

Early detection is critical for enhancing long-term life 

expectancy and increasing the chances of 

rehabilitation [4].  

In the past years, Pulmonary disorders are 

diagnosed using various medical imaging 



Received:  May 8, 2024.     Revised: July 7, 2024.                                                                                                            295 

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024           DOI: 10.22266/ijies2024.1031.24 

 

technologies such as skin tests, biopsy, sputum 

sample tests, Positron Emission Tomography (PET), 

Magnetic Resonance Imaging (MRI), CXR and CT 

scans [5]. Among these, CXR are prominent medical 

imaging technology that allow for rapid superior 

quality assessments of the lung parenchyma and 

adjacent structures to aid in early diagnosis [6].  

However, their accessibility and availability are 

limited in impoverished nations due to lack of a 

robust medical system and patient comfort [7]. 

Automated disease recognition and categorization 

systems are needed to program CXR analysis, 

reducing patient effort and improving overall health 

outcomes. 

DL is an emerging field used to diagnose various 

LD categories, aiding healthcare providers in making 

accurate medical decisions [8]. DL models are 

managed by multi-channel neural networks, 

improving their image categorization and accuracy in 

LD detection [9]. This approach has led to numerous 

investigations on medical imaging detections for 

early LD detection and diagnosis. For instances, 

AHDL-LDD model [10] was developed using CXR 

scans. This model utilized lung mask annotations to 

enhance lung ROIs in a CXR database. U-Net 

structure was used to extract the customized masks to 

differentiate the normal and infection levels. A 

modified CNN structure was used to categorize 

segregated lung areas. The model’s performance in 

diagnosing pulmonary diseases was significantly 

impacted by epistemic uncertainty. 

In order to solve this, CovLscan is developed for 

efficient LDs classification using CXR images. Also, 

CT images are employed to improve the model’s 

performance, because CT images includes detailed 

information that can be used to produce efficient 

results. Iinitially, both CXR and CT images are 

segmented using U-Net model to obtain improved 

lung ROIs. In this framework, various pre-trained 

CNN models like ResNet50, DenseNet121, 

InceptionResNetV2 and XceptionV3 are 

hierarchically extract informative and discriminative 

features from CXR and CT images. The conLSTM is 

used as classification model which gradually receives 

normalized feature inputs and fed into softMax for 

the classification task. The integration of con-LSTM 

and ELM i.e., E-conLSTM-ELM is designed to 

minimize computation time and optimize precision. 

The Deep feature from pre-trained CNN is fed into 

ELM, allowing the model to be optimized for 

accuracy without the need of a traditional Fully 

Connected (FC) layer. Moreover, TL is utilized in E-

conLSTM-ELM for enhancing the task of LD 

classification by facilitating knowledge exchange 

between features and classes in CXR and CT images.  

Deep domain adaptation is a type of TL that handles 

diverse datasets for the learning utilizing MMD to 

reduce domain shift. Additionally, the obtained CT 

labels will be fed into TL to learn different levels of 

extensive details and perspectives with shared 

semantic features from CT images for increasing the 

prediction result. Finally, the softmax layer of 

conLSTM is used for the prediction task. This model 

efficiently eliminates the epistemic uncertainty issue 

and provides a reliable solution for rapid detection of 

various LD types using CXR images 

The manuscript’s remaining portions are 

prepared as, Section II examines the work relating to 

this study. Section III explains the proposed 

CovLscan model for LD classification. Section IV 

illustrates its model’s performance effectiveness. 

Section V summarizes the whole work and suggests 

future enhancement. 

2. Literature survey 

The Class Activation Region Influence 

Maximization Conditional Generative Adversarial 

Network (CARIM-cGAN) was created [11] using 

CXR data for LD classification. But, it struggles to 

separate high-level features and stochastic disparities 

affecting categorization accuracy. 

A CNN with Contrast Adaptive Histogram 

Equalization (CLAHE) image scaling approach using 

the maximum window function was presented [12] 

using CXR data for LDs detection. However, this 

model provides lower accuracy results on larger 

dataset. 

A multilayer EfficientNet-based stacked 

ensemble technique was employed [13] for LD 

identification utilizing CXR images. But, imbalanced 

sample distribution in the dataset might affect the 

accuracy results. 

An EfficientNet v2-M was suggested [14] for 

categorizing the LD on CXR images. But, this model 

loses a substantial amount of useful data resulting in 

overfitting of classifier which reduces accuracy and 

recall. 

LungNet22 was developed [15] which utilizes 

pre-trained CNN models to classify and predict the 

LD using CXR data. But, precision and recall score 

was lower on employing images with poor 

illumination and backgrounds. 

A VGG19 model was constructed [16] for multi-

label LD classification using CXR images. But, few 

examples failed to provide appropriate accuracy 

prediction outcomes due to poor image quality.  
A Two Dimensional (2D) - CNN model and min-

max scaling was developed [17] for the automated 

LD detection using CXR images. But, large class 
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variance in training models hinders accuracy and F1-

Score results.  

A hybrid DL model (RVCNet) was presented 

[18] using CXR images of multiple classes for 

predicting LDs. On the other hand, when the data was 

increased, the performance accuracy decreased.  

A multi-classification method CDCNet was 

developed [19] which integrates residual network and 

dilated convo9ution to classify LD types using CXR 

images. However, the models hyper-parameter was 

not fine-tuned properly lowering the accuracy rate.  

An Auction-Based Optimization Algorithm 

(ABOA)-CNN model was devised [20] using CXR 

images for the pulmonary disease prediction. But, 

this model failed to identify the optimal features 

subset which lowers the accuracy rate. 

3. Proposed methodology 

In this section, the suggested CovLscan model is 

shown. Fig. 1 pipeline of the suggested model. Table 

1 lists the notations used in this study. 

3.1 U-Net based segmentation 

In this model, the U-Net structure is used for 

segmentation and it consists of contraction (encoder) 

and expansion (decoder) routes. For down-sampling, 

the compression approach uses recurrent 3𝑥3 

convolution functions, ReLU Stimulation and 

2𝑥2 max pooling, each of which increases the total 

number of feature layers.  

 

 
Figure. 1 Entire Pipeline of the Proposed Study 

Table 1. Lists of notations 

Notations Description 

𝑊ℎ Weights Of Trained U-Net 

𝑏𝑘 Bias Variable 

ℎ Hidden Layer 

𝑘 Number of Input Variables 

𝑞 Number of Neurons 

𝒜𝑞
𝑟  Activation Function 

𝑛 Total Number of Images  

𝑊𝑞 Reference Masks for Each Image  

𝑊𝑞
′ Segmented Masks 

𝐶𝑡 Cell State   

𝐼𝑡 Input Gate 

𝐹𝑡 Forget Gate 

𝑂𝑡 Output Cell  

⊗  Convolution operator 

× Hadamard product  

𝑉 Distinct Training Images 

𝑗(𝑋) Activation Operation 

𝑂ℓ(𝑋) Output Vector of SLFNN 

𝑖𝑧 Input Weight respect to 𝑧𝑡ℎ Hidden Layer 

𝑏𝑧 Bias Weight respect to 𝑧𝑡ℎ Hidden Layer 

𝛼𝑧 Output Weight respect to 𝑧𝑡ℎ Hidden 

Layer 

ℎ Output matrix of hidden layer 

𝑄  Target Output 

𝛼  Output Weights 

ℎ† Moore-Penrose Operation  

𝐽𝑦  Input Map Selection  

𝐹(. )  Activation Function 

 𝑏𝑦
𝐶  Training Bias  

𝓀𝑧𝑦
𝐶  Variable Kernels 

𝑥 Input Activation 

𝐹(𝑋)  Output Activation Node 

𝑑𝑜𝑤𝑛(. ) Down-Sampling 

𝑋𝑦
𝐶−1 Local features from previous layers  

𝑋𝑦
𝐶 Output activation of subsequent layers in 

conLSTM 

𝐷𝑆 Source Domain Data 

𝑚 Source Site Value 

𝐷𝑇  Target Domain Data 

𝜇 Nonlinear Mapping Function in HS 

𝑀𝑖 (.)  𝑖𝑡ℎ layer of the E-ConLSTM-ELM 

𝜒𝑠 Source Feature Representation 

𝜒𝑇  Target Feature Representation 

𝑀2𝑑
𝑖  𝑖𝑡ℎ layer of E-ConLSTM-ELM for 𝐼𝐼 

Domain 

𝐿𝑀𝑀𝐷  Transfer Loss of MMD 
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The expansion route employs up-convolution with 2 

×2 transposed convolutions for precision, while 

skipping algorithms recover data lost during 

shrinkage channel down-sampling, facilitating 

feature map transfer. A U-Net structure is created 

using CXR and CT image datasets to enhance lung 

ROIs, with training efficiency determined by the 

configuration of adaptable parameters. The U-Net 

structure’s weights are learned from a database and 

used to optimize segmentation results on CXR and 

CT images, with extra bias projections depicted in Eq. 

(1). 

 

𝒜𝑞
ℎ =  ∑ 𝑊𝑞𝑘 

ℎ𝐾
𝑘=1 𝑎𝑘 + 𝑏𝑞

ℎ , 𝑘 = 1,2, . . , 𝐾        (1) 

 

In Eq. (1), 𝑊ℎ  denotes the trained U-Net weights, 

𝑎  symbolizes the input parameter, 𝑏𝑘  is the value 

added as a bias. The model’s hidden layer, input 

parameters, and neurons are denoted as ℎ, 𝑘 and 𝑞. 

An activation mechanism takes the outcome 𝒜𝑞
𝑟  as 

input and activates or deactivates a neuron. The 

Binary Cross-Entropy (BCE) loss operation is used in 

this model to estimate the difference between 

segmented masks and perceptual typical masks for 

every single image of CXR and CT, as stated in Eq. 

(2). 

 

𝐵𝐶𝐸 =  −
1

𝑛
 ∑ 𝑊𝑚 𝑙𝑜𝑔𝑊𝑞

′

𝑛

𝑞=1

 

+(1 − 𝑊𝑞) log (1 − 𝑊𝑞
′)       (2)  

 

In Eq. (2), 𝑛 denotes the complete image numbers 

used for training, 𝑊𝑞  provides subjective standard 

masks for each CT and CXR image and  
𝑊𝑞

′  contributes segmented masks created by the 

model. 

3.2 Feature extraction using ensemble pre-trained 

CNN models 

In this model, the pre-trained CNN models 

ResNet50, DenseNet121, Inception-ResNet-V2 and 

Xception are employed to extract discriminative and 

informative features from the segmented CXR and 

CT images which is illustrated below. 

ResNet50: ResNet50, a ResNet variation or 

Residual Network, is made up of 48 convolutional 

layers, one MaxPool, and one average pool layer. 

Every convolution unit consists of three convolution 

layers, as does each recognition component. ResNet-

50 contains almost 23 million variables that can be 

directed. 

DenseNet121: DenseNet121’s input is a constant 

224 × 224 RGB image. DenseNet121 consists of 121 

layers, each with about 8 million variables It is 

divided into DenseBlocks, with each unit having the 

same feature map size but different filter frequencies. 

The spaces between the blocks are known as a 

transitional layer, and they do batch normalization 

during downsampling. Finally, a pooling network 

with softmax stimulation is employed to categorize.  

Inception-ResNet-V2: It has 164 layers and a 

picture input size of 299 × 299. Its fundamental 

building block is the Residual Inception Block, which 

employs a 1 x 1 convolution filter diversification 

layer to increase the filter boundary density. Batch 

standardization is implemented on the highest 

standard layers. The design features multiple-sized 

convolutional filters with residual associations to 

reduce deterioration caused by deep networks and 

shorten training times.  

Xception: It is a modification of the Inception 

structure that replaces the Inception elements with 

depth-wise independent convolutions. Xception beat 

the standard InceptionV3 on the ImageNet dataset, 

achieving greater Top-1 and Top-5 reliability. The 

amount of variables in Xception is approximately 23 

million. 

3.3 Transfer learning and E-conLSTM-ELM for 

classification 

The extracted deep features from the ResNet50, 

DenseNet121, InceptionResNetV2 and Xception are 

fed into the E-conLSTM-ELM model to accurately 

classify the various LD. In the proposed E-

conLSTM-ELM model, TL is used for knowledge 

exchange between features and classes relation 

among CXR and CT images and improve the target 

task of LD classification.  The E-conLSTM-ELM 

model learned generated features in the domain and 

their variables were preserved throughout the TL. 

The model substitutes matrix multiplication with 

convolution computations for every gate in the 

LSTM cell, allowing it to capture fundamental spatial 

properties in multidimensional information. 

The most significant component of the functional 

ConvLSTM structure is the cell state 𝐶𝑡 which is 

utilized to store the data. If the input gate 𝐼𝑡   is 

triggered, the input value is saved, but if the forget 

gate 𝐹𝑡   is activated, the prior state 𝑐𝑡−1 is discarded. 

Furthermore, the output cell 𝑂𝑡   determines whether 

the current cell state 𝑐𝑡  is turned into the ultimate 

hidden state ℎ𝑡 . In this approach, a basic LSTM 

model works. However, in the ConvLSTM layer, the 

inputs 𝑋1, 𝑋2, 𝑋, … . . , 𝑋𝑛 , the cell states 

𝐶1, 𝐶2, 𝐶3, … . . , 𝐶𝑛, the hidden states 
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𝐻1, 𝐻2, 𝐻3, … . . , 𝐻𝑛 and the gates  𝐼𝑡, 𝐶 and 𝑂𝑡 are all 

termed as 3D tensors.   

In order to illustrate the ConvLSTM layer, view 

the inputs and gates as vectors in a grid-like form in 

linear dimension. The ConvLSTM layer predicts the 

future state of a cell by gathering the inputs and final 

iteration of the local entities of the specific unit. The 

constructive steps involved in con-LSTM is listed 

below from Eqs. (3) to (7), 

 

𝐹𝑡 =  𝜎(𝑊𝑋𝐹 ⊗ 𝑋𝑡 + 𝑊𝐻𝐹 ⊗ 𝐻𝑡−1 + 𝑊𝐶𝐹 ⊗
𝐶𝑡−1 + 𝑏𝑓)                                                                        (3) 

 

𝐼𝑡 =  𝜎(𝑊𝑋𝐼 ⊗ 𝑋𝑡 + 𝑊𝐻𝐼 ∗ 𝐻𝑡−1 + 𝑊𝐶𝐼 ⊗ 𝐶𝑡−1 +
 𝑏𝑖)                                                                            (4) 

 

𝑂𝑡 =  𝜎(𝑊𝑋𝑂 ⊗ 𝑋𝑡 + 𝑊𝐻𝑂 ⊗ 𝐻𝑡−1 + 𝑊𝐶𝑂 ⊗
𝐶𝑡−1 + 𝑏𝑜)                                                              (5) 

 

𝐶𝑡 =  𝐹𝑡  × 𝐶𝑡−1 + 𝐼𝑡  × tanh (𝑊𝑋𝐶 ⊗ 𝑋𝑡 + 𝑊𝐻𝐶 ⊗
 𝐻𝑡−1 + 𝑏𝑐)                                                              (6) 

 

𝐻𝑡 = 𝑂𝑡 × tanh(𝐶𝑡)                                                 (7) 

 

Where ‘ ⊗ ’ indicates convolution, ‘ × ’ indicates 

Hadamard product, 𝑊𝐶𝐹 , 𝑊𝐶𝐼 , 𝑊𝐶𝑂  and 𝑊𝐻𝐶  and 

𝑏𝑓 , 𝑏𝑖, 𝑏𝑜 and  𝑏𝑐  are the weight matrices and bias 

vectors will be updated in each update process. The 

ELM is combined with conLSTM to enhance the 

classification accuracy and eliminate the 

computational time. In the given 𝑉 distinct training 

images samples from conLSTM is given in Eq. (8), 

 

𝑉 = (𝑋𝑧, 𝑇𝑧)| 𝑋𝑧 ∈ 𝐺𝑒 , 𝑇𝑧 ∈ 𝐺𝑒 ∈, 𝑧 = 1, … , 𝑛   (8) 

 

The output operation of ELM based on Single 

Layer Feedforward Neural Networks (SLFNN) for 

updating the ℎ hidden units and 𝑗(𝑋) as an initiation 

operation which is signified as follows, 

 

𝑂ℓ(𝑋) =  ∑ 𝛼𝑧
ℎ
𝑧=1 𝐽(𝑖𝑧, 𝑏𝑧, 𝑥𝑦), 𝑦 = 1, 2,3 … 𝑛   (9) 

 

In the preceding Eq. (9)  𝑂ℓ(𝑋) represents the 

resultant vector of SLFNN in reference to the input 

occurrences. The learning factors 𝑖𝑧 and 𝑏𝑧  will be 

calculated randomly at the hidden layers. The input 

weight vector 𝑖𝑧 is connected with the 𝑧𝑡ℎ  hidden 

layer and input block.  𝑏𝑧  represents the bias of the 

𝑧𝑡ℎ − hidden unit. The stimulation mechanism of the 

ELM layer in conLSTM is 𝐽(𝑖𝑧, 𝑏𝑧, 𝑥𝑦)  where 

𝛼𝑧 connects the resultant weight to the 𝑧𝑡ℎ − hidden 

and output terminals. The Eq. (10) is compactly given 

as  

 

ℎ𝛼 =  𝑄                             (10) 

 

Where, ℎ  represents the generated vector of 

hidden layer Eq. (11), 𝑄 and 𝛼  denotes the desired 

outcome and its corresponding output weights 

respectively represented in Eqs. (12) and (13) 

 

ℎ =  [
𝐽(𝑖1, 𝑏1, 𝑥1) ⋯ 𝐽(𝑖ℎ , 𝑏ℎ , 𝑥1)

⋮ ⋱ ⋮
𝐽(𝑖1, 𝑏1, 𝑥𝑉) ⋯ 𝐽(𝑖ℎ , 𝑏ℎ, 𝑥𝑁)

]

𝑉∗ℓ

    (11) 

 

𝛼 =  [

𝛼1
𝛿

..
𝛼1

𝛿

]

ℓ∗𝑉

                         (12) 

 

𝑄 =  [

𝑇1
𝛿

..
𝑇𝑉

𝛿

]

ℓ∗𝑒

                         (13) 

 

However, ELM selects the hidden node variables 

(e.g., 𝑖𝑧, 𝑏𝑧) arbitrarily and reduces the cost operation  

(𝑂ℓ(𝑋) −  𝑄). From a linear algebraic perspective, 

Eq. (14) resembles the quadratic calculation with the 

outcome weights 𝛼  can be determined statistically 

using a minimal-squares approach. 

 

𝛼 = ℎ†𝑄                            (14) 

 

In Eq. (14), ℎ† employs the Moore-Penrose 

modified opposite of matrix ℎ  and matrix 𝑄 

= [𝑞1, 𝑞2, … , 𝑞𝑛]𝑄 to determine the resultant weights, 

preserving training period by eliminating repetitive 

variable modifications with appropriate training 

variables such as learning speed and repetitions. 

The outermost layer of conLSTM is used to 

generate image integration using ELM, which can be 

expressed as image vectors. The 4 × 4 × 512 output 

map from conLSTM is flattened into a 1 × 1 × 512 

image vector that is sent to the ELM, allowing the 

model’s efficiency to be optimized despite using the 

typical FC layer. The layer allocation of CovLscan is 

408 layers of E-conLSTM-ELM, 1 layer of flattening 

and 8 levels of ELM.  The E-conLSTM-ELM design 

connects the LSTM convolution and memory layers 

with Rectified Linear Unit (ReLU) stimulation and 

max-pooling layers in a sequential manner, as shown 

in Eq. (15).  

 

𝑋𝑦
𝐶 = 𝐹 (∑ 𝑋

𝐶−1

𝑧𝑧∈𝐽𝑦
⊗  𝓀𝑧𝑦

𝐶 + 𝑏𝑦
𝐶)       (15) 

 

The resultant feature map is computed using Eq. 

(12), which 
𝐶−1

𝑧
 i includes the local attributes from 
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preceding layer. The elements  𝐽𝑦 , 𝐹(. )𝑏𝑦
𝐶  and 𝓀𝑧𝑦

𝐶  

defines the input map decisions, stimulation 

operation, training bias and parametric kernels. The 

quadratic ReLU procedure is utilized to enable the 

CNN layers which is defines in Eq. (16) which 

improves training efficacy. 

 

𝐹(𝑋) = 𝑚𝑎𝑥 (0, 𝑋)                       (16) 

 

Where 𝑋 is the the node’s input stimulation and 

𝐹(𝑋) represents the resultant stimulation. A pooling 

layer is employed to minimize overfitting while 

minimizing computing nodes and its 

computation strain as illustrated in Eq. (17). 

 

𝑋𝑦
𝐶 = 𝑑𝑜𝑤𝑛(𝑋𝑦

𝐶−1)                       (17) 

 

In Eq. (17), 𝑑𝑜𝑤𝑛(. ) demonstrates down-

sampling, 𝑋𝑦
𝐶−1 indicates local attributes from prior 

layers and 𝑋𝑦
𝐶  denotes the output stimulation of 

following layers accompanied with conLSTM. To 

transfer learning weights, compute the variation 

between original and target domain sites and select 

the closest source domain position. This strategy 

improves the reliability of conLSTM model. MMD 

is used to divide Kernel Hilbert Space (KHS) to 

determine mean discrepancy by deducting the mean 

operation of each sample. The mean discrepancy 

between two instances can be calculated by 

subtracting the mean operation of each sample, often 

using the square shape for efficiency. Eq. (18) 

represents the actual domain data in a specific source 

realm. 

 

𝐷𝑆 =  (𝑎1, 𝑎2, … . , 𝑎𝑚)                   (18) 

 

Where 𝑎  and 𝑚 denotes the actual domain site 

data and its number correspondingly. Eq. (19) 

represents the expected source information within the 

target domain. 

 

𝐷𝑇 =  (𝑦1, 𝑦2, … . , 𝑦𝑛)                  (19) 

 

Where 𝑦  indicates the desired range and n 

symbolizes data integer.  The negative projection 

functions in the KHS of the regeneration kernel are 

known as 𝜇 .Eq. (20) describes the square 

representation of MMD. 

 

𝑀𝑀𝐷𝐻𝑆
2  (𝐷𝑆, 𝐷𝑇) =  ‖

1

𝑛
 ∑ 𝜇(𝑎𝑖)𝑚

𝑖=1 −

1

𝑛
 ∑ 𝜇(𝑦𝑖)𝑛

𝑖=1 ‖
2
                                                              (20) 

 

The variations in dispersion determines the 

proximity among two data allocations, with adjacent 

domains having a lower MMD value.   MMD is 

employed in TL to choose the best appropriate source 

domain site for transferring to the destination 

domain based on resemblance. The mapping 

operation 𝑀𝑖  (.) represents the 𝑖𝑡ℎ  layer of E-

ConLSTM-ELM. CXR and CT imaging data are used 

to create depictions aspects of the source (𝜒𝑠 ) and 

target (𝜒𝑇) which is formulated in Eqs. (21) and (22), 

 

𝑀𝑆 =  𝑚𝑁(… 𝑀1(𝜒𝑠))                 (21) 

 

𝑀𝑇 =  𝑚𝑁 (… 𝑀1(𝜒𝑇))               (22) 

 

𝑀𝑆  and 𝑀𝑇  are the resultant feature 

representations of the two image domains obtained 

by E-ConLSTM-ELM layer The MMD is also 

employed in this classification assignment to enforce 

the extracted features constraints during TL task. 

Since, the TL is also applied in E-ConLSTM-ELM 

classification part, the constructed MMD in Eq. (23). 

 

𝐷𝑖
𝑆 = 𝑚2𝑑

𝑖 (𝑚2𝑑
𝑖−1 (… 𝑚2𝑑

1 (𝑀𝑆)))          (23) 

 

 

 
Figure. 2 Block Structure of E-conLSTM-ELM architecture 
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Eq. (23) is re-modified according to the layers 

and is represented in Eq. (24). Assume, 𝑀2𝑑
𝑖  denote 

the 𝑖𝑡ℎ  layer of E-ConLSTM-ELM for second 

domain 2𝑑 , then the transfer loss 𝐿𝑀𝑀𝐷  form the 

feature extraction of MMD can be computed as 

represented in Eq. (24). 

 

𝐷𝑖
𝑇 = 𝑚2𝑑

𝑖  (𝑚2𝑑
𝑖−1 (… 𝑚2𝑑

1 (𝑀𝑇)))         (24) 

 

It is shown that the original and desired domains 

in conLSTM shares the identical attributes of 𝑀𝑖(.) 

and 𝑀2𝑑
𝑖  (.) in which the parameters are independent 

to classify the extracted CXR and CT is in Eq. (25) 

 

𝐿𝑀𝑀𝐷 =  ∑ 𝑑𝑀𝑀𝐷
 2𝑁

𝑖=1  (𝐷𝑖
𝑆, 𝐷𝑖

𝑇)             (25) 

 

Finally, the reshaped output features are fed into 

softmax layer to classify different types of LD. Thus, 

the constructed framework resolve the epistemic 

uncertainty issue for immediate detection of various 

diseases utilizing CXR images. Fig. 2 show the E-

ConLSTM-ELM layout. 

4. Results and discussion 

4.1 Dataset description 

ChestX-ray8 [21] contains 108,948 frontal-view 

X-ray images of 32,717 distinct patients gathered 

from 1992 to 2015 with the text-mined eight frequent 

condition labels extracted from the text radiography 

reports using NLP algorithms.  This dataset consists 

of eight classes like Atelectasis, Cardiomegaly, 

Effusion, Infiltration, Mass, Nodule, Pneumonia and 

Pneumathorax.  

NIH Chest X-Ray [22] dataset is comprised of 

112,120 X-ray images with disease labels from 

30,805 unique patients. This dataset constitutes of 14 

classes like Atelectasis, Cardiomegaly, Effusion, 

Infiltration, Mass, Nodule, Pneumonia, 

Pneumothorax, Consolidation, Edema, Emphysema 

Fibrosis, Pleural_Thickening and Hernia. 

Additionally, the information of COVID-19 and 

Non-Covid (normal) is obtained from [25], which 

contains 6432 CXR images are taken along with these 

two datasets.  

Totally, five classes (Covid-19, Pneumonia, 

Normal, Infiltrate and Atelectasis) are listed for the 

experimental purposes. In order to improve the 

pulmonary disease detection from CXR images for 

proposed model trained models generated from CT 

images are utilized. CT images are collected from 

various sources [24-28]. The same classes utilized in 

CXR dataset are taken from the CT images. For the 

evaluation, only CXR datasets are used. 

4.2 Experimental setup and performance 

evaluation 

The implementation of both proposed and 

existing model is executed on a system with 

MATLAB 2019B using the datasets illustrated in 

section 4.1. The collected datasets are individually 

divided into 70% for training and 30% for testing. 

Table 3 depicts the parameter configuration of both 

existing and proposed model. A comparative study is 

presented between CovLscan and existing pulmonary 

diseases models like AHDL-LDD [10], Efficient Net 

v2-M [14], LungNet22 [15], CDCNet [19] and 

ABOA-CNN [20]. These proposed and current 

models are assessed using accuracy, precision and 

recall concisely described below. 

Accuracy: It is the ratio of properly classified 

instances for every LD classes to the total number of 

instances evaluated. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                (26) 

 

In above Eq. (26), True Positive (TP) indicates 

the model correctly labels LD categories, for example, 

Infiltrate is categorized as Infiltrate, while True 

Negative (TN) indicates the predictor incorrectly 

identifies classes, for example Infiltrate as other 

categories. False Positive (FP) indicates the 

algorithm correctly classified other categories as 

others (other than Infiltrate) and False Negative (FN) 

indicates the model incorrectly predict others as 

Infiltrate. The same definition is applicable for all 

categories of diseases.  The average values are 

calculated finally for all classes. 

Precision: It represents the proportion of correctly 

classified instances of LD classes at TP and FP 

incidences. It is shown in Eq. (27), 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃 

𝑇𝑃+𝐹𝑃
                     (27) 

 

Recall: It is the proportion of precisely identified 

classified LD instances at TP and FN occurrences in 

Eq. (28), 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =   
𝑇𝑃

𝑇𝑃  + 𝐹𝑁
                      (28) 

 

F1-Score: It is stated as the cumulative mean of 

precision and recall as in Eq. (28), where ‘1’ is the 

highest and ‘0’ is the lowest potential number. 
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Table 3. Parameter Configuration for Proposed and 

Existing Models 

Model Parameters  Range 

AHDL-

LDD 

[10] 

No. of Convolutional 

(Conv) layers  

3 

Stride  2 

Optimizer  Adam  

Activation Function  ReLU 

Batch Size 64 

No. of Epochs  200 

Weight Decay 0.0001 

Loss Function  BCE 

Learning Rate 0.0001 

Efficient 

Net v2-

M 

[14] 

Input Layer 4 

Efficientnetv2-m layer 19 

Optimizer  Adam 

Activation Function  Sigmoid 

Dropout rate 0.4 

Batch Size 8 

No. of Epochs  50 

Loss Function  Categorical 

CE (CCE)  

LungNet

22 [15] 

No. of Conv layers  3 

No. of. Maxpooling 

Layer  

2 

Stride  1 

Optimizer  Adam 

Activation Function  ReLU 

Batch Size 128 

No. of Epochs  300 

Loss Function  CCE 

Learning Rate 0.000001 

CDCNet 

[19] 

No. of. Conv Layer  2 

No. of Dense Layer 2 

Optimizer   SGD 

Activation Function  ReLU 

Batch Size 64 

No. of Epochs  500 

Loss Function  Mean Square 

Error (MSE) 

Learning Rate 0.1 

ABOA-

CNN 

[20] 

Input layer 3 

Convolution Kernels 3 

Filters  2 

Optimizer  SGD 

Activation Function  Tanh 

Batch Size 120 

No. of Epochs  350 

Loss Function  Cross entropy 

Learning Rate 0.01 

Propose

d model 

Number (No). of.   

U-Net Layers  

23 

Convolutional 

Layers with 

contracting 

and expansive 

layers 

Stride  2 

No. of.    Layers -   121 

DenseNet;  

No. of.    Layers - 

InceptionResNetV2  

164 

No. of.    Layers -   

Xception 

71 

E-conLSTM-ELM layers 

Input layer (feature) 2 

Input dimension 192×192×3 

Conv Layer 64 

Kernel size 3 

Activation Function ReLU (64) 

Batch Normalization 64 

Average + Max Pooling 

Layers 

15 (8+7) 

Number of LSTM layer 

hidden unit 

98 

Time Step 6 

Output dimension 4 ×4× 512 

Flatten 1 

Flatten Input  192×192×3 

Flatten output 4×4×512 

ELM Input Layer 2 

ELM Hidden Layer 4 

ELM Output Layer 2 

ELM Input  1×1×512 

ELM Output 5 

Optimizer  Adam 

Dropout rate 0.6 

Activation Function  ReLU 

Batch Size 64 

No. of Epochs  100 

Weight Decay 0.0005  

Loss Function  BCE 

Learning Rate  0.001 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
         (29) 

 

Area Under Curve (AUC): The AUC Score ranges 

from 0 to 1 by drawing the Receiver Operating 

Characteristic (ROC) curve, which compares the TP 

rate (TPR) to FP Rate (FPR) for every possible cut-

off point of a diagnostic test. 

Figs. 3 and 4 displays the accuracy (in %) 

achieved by AHDL-LDD, EfficientNet v2-M, 

LungNet22, CDCNet ABOA-CNN and CovLscan 

for diagnosing various LD categories like Covid-19, 

pneumonia, normal, infiltrate and atelectasis. The 

investigation shows that CovLscan excels than other 

models on two datasets. For example, in the 

pneumonia categorization, accuracy of CovLscan is 

15.76%, 12.72%, 8.33%, 5.49% and 2.09% (for 

ChestX-ray8); 15.83%, 12.55%, 7.84%, 5.11% and 

2.86% (for NIH-CXR) which is greater than other 

existing models respectively. 

Figs. 5 and 6 shows the precision (in %) attained 

by proposed and existing models.  
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Figure. 4 Accuracy Comparison of LD category prediction models for NIH Chest X-ray 

 

 

 
Figure. 5 Precision Comparison of LD category prediction models for ChestX-ray8 

 

 

 
Figure. 6 Precision Comparison of LD category prediction models for NIH Chest X-ray 
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Figure. 7 Recall Comparison of LD category prediction models for ChestX-ray8 

 

 

 
Figure. 8 Recall Comparison of LD category prediction models for NIH Chest X-ray 

 

 

 
Figure. 9 F1-Score Comparison of LD category prediction models for ChestX-ray8 
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Figure. 10 F1-Score Comparison of LD category prediction models for NIH Chest X-ray 

 

 

 
Figure. 12 AUC Comparison of LD category prediction 

models for ChestX-ray8 

 

 
Figure. 12 AUC Comparison of LD category prediction 

models for NIH Chest X-ray 

 

 

 

This analysis obtains that the proposed CovLscan 

model outperforms other models in predicting each 

LD categories using two CXR datasets. For example, 

in the case of Covid-19 classification, the precision 

of CovLscan is 20.04% and 18.97% greater than 

AHDL-LDD, 16.45% and 16.95% higher than 

EfficientNet v2-M; 13.07% and 12.89% greater than 

LungNet22; 8.19% and 7.31% greater than CDCNet; 

3.83% and 2.88% higher than ABOA-CNN models 

for ChestX-ray8 and NIH-CXR respectively.  

Figs. 7 and 8 depicted the recall (in %) obtained 

by existing models.  It is determined that the recall of 

CovLscan for each LD category is superior to that of 

other classification models. For example, in the case 

of infiltrate classification, the recall of CovLscan is 

20.72%, 16.16%, 11.41%, 6.44% and 2.90% (for 

ChestX-ray8); 17.77%, 13.23%, 9.87%, 5.62% and 

1.24% (for NIH-CXR) is higher than AHDL-LDD, 

EfficientNet v2-M, LungNet22, CDCNet ABOA-

CNN respectively.  

Figs. 9 and 10 provides the F1-score (in %) 

obtained by existing models for diagnosing various 

LDs categories using two datasets correspondingly. It 

is determined that the F1-score of CovLscan for each 

LD category is superior than other models. For 

example, in the case of normal classification, F1-

score of CovLscan is 20.87% and 17.48% greater 

than AHDL-LDD, 16.08% and 13.19% greater than 

Efficient Net v2-M, 12.18% and 7.01% greater than 

LungNet22, 8.08% and 4.99% greater than CDCNet, 

4.77% and 1.36% greater than ABOA-CNN for 

ChestX-ray8 and NIH-CXR respectively.  
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Figs. 11 and 12 provides AUC obtained by 

existing models for diagnosing various LDs 

categories using two datasets correspondingly. It 

indicates that the AUC of CovLscan is 0.94% and % 

greater than AHDL-LDD, 0.83% and 0.79% greater 

than EfficientNet v2-M, 0.72% and 0.61% greater 

than LungNet22, 0.61% and 0.54% greater than 

CDCNet, 0.5% and 0.47% greater than ABOA-CNN 

for ChestX-ray8 and NIH-CXR respectively. 

In the literature, AHDL-LDD [12], EfficientNet 

v2-M [16], LungNet22 [17], CDCNet [21] and 

ABOA-CNN [22] model have utilized NIH-CXR 

dataset for the evaluation. In this model, ChestX-ray8 

have considered for the performance task. Hence, this 

work evaluates proposed and existing models on both 

ChestX-ray8 and NIH-CXR datasets by using the 

parameters as per Table 3. From the above 

comparison, it is proved that the proposed CovLscan 

model obtains efficient results on both ChestX-ray8 

and NIH-CXR datasets for the classification lung 

cancer and its categories. 

5. Conclusion 

In this article, CovLscan model is created to 

reduce the ambiguity concerns and improve the LD 

categorization efficiency. This method segments the 

collected images using U-Net model and pre-trained 

CNN models for feature extraction. The con-LSTM 

is used for the classification task. The ELM is applied 

in conLSTM to reduce computational time and 

improve accuracy. TL model is used to exchange 

knowledge from CT features and classes to CXR 

feature learning. The domain adaptation strategy 

reduces domain shift using MMD for efficient 

classification. CovLscan model achieves an overall 

accuracy of   95.46% and 96.15% on ChestX-ray8 

and NIH-CXR datasets, which is greater than AHDL-

LDD, EfficientNetv2-M, LungNet22, CDCNet and 

ABOA-CNN. In future, Multi-Scale Generative 

Adversarial Network (MS-GAN) model will be 

developed to improve the CovLscan by increasing 

labeled LD images and generating high-quality target 

images from source modal images facilitating 

efficient LD prediction. 
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