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Abstract: In accordance to the World Health Organization (WHO), various pulmonary diseases cause thousands of
deaths annually. The early diagnosis is required to lessen the mortality rate. For this reason, A Convolutional Neural
Network (CNN)-based Lung Disease (LD) detection system is developed to classify segregated lung sections into
various pulmonary diseases types. However, epistemic uncertainty in the scanned images affecting the performance
of detection classifiers. Hence, in this paper, a multi-modal approach is proposed to solve the epistemic uncertainty
issue and provides a reliable solution for rapid detection of various LD types from CXR images. In this method, CT
images are additionally used to improve model’s performance as it contains detailed information that might be
exploited to provide efficient results. Initially, the collected images are segmented using U-Net model to get enhanced
lung Region of Interest (ROIs). Then ResNet50, DenseNet121, InceptionResNetV2 and XceptionV3 are used to
hierarchically extract informative and discriminative features from collected CXR and CT images. The retrieved deep
features are fed into the Ensemble-Convolutional Long Short Term Memory with Extreme Machine Learning (E-
conLSTM-ELM) to minimize the computational time and increase the accuracy. Moreover, Transfer Learning (TL)
model is employed to learn the weight of the E-conLSTM-ELM to exchange the knowledge between features and
classes relation among CXR and CT images. Also, the domain adaptation approach is a variant of TL model that relies
on employing similar datasets for a shared learning problem. This adaption strategy reduces the domain shift (data
dispersion) using Maximum Mean Discrepancy (MMD). The shared semantic features from CT images through TL
improve the in-depth learning of softmax layer to classify different LD types. The proposed work is simply named as
Convolutional LD Scan (CovLscan) framework The test outcomes reveal that the CovLscan model accomplishes an
overall accuracy of 95.46% and 96.15% on the collected ChestX-ray8 and NIH-CXR datasets, which is higher than
the existing models like Automated Hierarchical Deep Learning based LD Diagnosis(AHDL-LDD), EfficientNet
version2-Medium (EfficientNet v2-M), Lung diseases prediction Network22(LungNet22), Chest tract disorder
prediction using Dilated Convolutional Network(CDCNet) and Auction-Based Optimization Algorithm-CNN
(ABOA-CNN).
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1. Introduction

Pulmonary illnesses, often known as respiratory
disorders, have a significant effect on the bronchi and
other pulmonary tissues [1]. Examples include
pneumonia, TB and Coronavirus Disease 2019
(COVID-19). According to the Federation of Global
Pulmonary Communities, 334 million people
worldwide have asthma, and 1.4 million die each year
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from TB [2]. The COVID-19 pandemic affected
every country in the globe, infecting millions and
causing damage on medical facilities [3]. Respiratory
disorders are the leading cause of death globally.
Early detection is critical for enhancing long-term life
expectancy and increasing the chances of
rehabilitation [4].

In the past years, Pulmonary disorders are
diagnosed using various medical imaging
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technologies such as skin tests, biopsy, sputum
sample tests, Positron Emission Tomography (PET),
Magnetic Resonance Imaging (MRI), CXR and CT
scans [5]. Among these, CXR are prominent medical
imaging technology that allow for rapid superior
quality assessments of the lung parenchyma and
adjacent structures to aid in early diagnosis [6].
However, their accessibility and availability are
limited in impoverished nations due to lack of a
robust medical system and patient comfort [7].
Automated disease recognition and categorization
systems are needed to program CXR analysis,
reducing patient effort and improving overall health
outcomes.

DL is an emerging field used to diagnose various
LD categories, aiding healthcare providers in making
accurate medical decisions [8]. DL models are
managed by multi-channel neural networks,
improving their image categorization and accuracy in
LD detection [9]. This approach has led to numerous
investigations on medical imaging detections for
early LD detection and diagnosis. For instances,
AHDL-LDD model [10] was developed using CXR
scans. This model utilized lung mask annotations to
enhance lung ROIs in a CXR database. U-Net
structure was used to extract the customized masks to
differentiate the normal and infection levels. A
modified CNN structure was used to categorize
segregated lung areas. The model’s performance in
diagnosing pulmonary diseases was significantly
impacted by epistemic uncertainty.

In order to solve this, CovLscan is developed for
efficient LDs classification using CXR images. Also,
CT images are employed to improve the model’s
performance, because CT images includes detailed
information that can be used to produce efficient
results. linitially, both CXR and CT images are
segmented using U-Net model to obtain improved
lung ROIs. In this framework, various pre-trained
CNN models like ResNet50, DenseNet121,
InceptionResNetV2 and XceptionV3 are
hierarchically extract informative and discriminative
features from CXR and CT images. The conLSTM is
used as classification model which gradually receives
normalized feature inputs and fed into softMax for
the classification task. The integration of con-LSTM
and ELM i.e.,, E-conLSTM-ELM is designed to
minimize computation time and optimize precision.
The Deep feature from pre-trained CNN is fed into
ELM, allowing the model to be optimized for
accuracy without the need of a traditional Fully
Connected (FC) layer. Moreover, TL is utilized in E-
conLSTM-ELM for enhancing the task of LD
classification by facilitating knowledge exchange
between features and classes in CXR and CT images.
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Deep domain adaptation is a type of TL that handles
diverse datasets for the learning utilizing MMD to
reduce domain shift. Additionally, the obtained CT
labels will be fed into TL to learn different levels of
extensive details and perspectives with shared
semantic features from CT images for increasing the
prediction result. Finally, the softmax layer of
conL.STM is used for the prediction task. This model
efficiently eliminates the epistemic uncertainty issue
and provides a reliable solution for rapid detection of
various LD types using CXR images

The manuscript’s remaining portions are
prepared as, Section Il examines the work relating to
this study. Section I explains the proposed
CovLscan model for LD classification. Section 1V
illustrates its model’s performance effectiveness.
Section V summarizes the whole work and suggests
future enhancement.

2. Literature survey

The Class Activation Region Influence
Maximization Conditional Generative Adversarial
Network (CARIM-cGAN) was created [11] using
CXR data for LD classification. But, it struggles to
separate high-level features and stochastic disparities
affecting categorization accuracy.

A CNN with Contrast Adaptive Histogram
Equalization (CLAHE) image scaling approach using
the maximum window function was presented [12]
using CXR data for LDs detection. However, this
model provides lower accuracy results on larger
dataset.

A multilayer  EfficientNet-based  stacked
ensemble technique was employed [13] for LD
identification utilizing CXR images. But, imbalanced
sample distribution in the dataset might affect the
accuracy results.

An EfficientNet v2-M was suggested [14] for
categorizing the LD on CXR images. But, this model
loses a substantial amount of useful data resulting in
overfitting of classifier which reduces accuracy and
recall.

LungNet22 was developed [15] which utilizes
pre-trained CNN models to classify and predict the
LD using CXR data. But, precision and recall score
was lower on employing images with poor
illumination and backgrounds.

A VGG19 model was constructed [16] for multi-
label LD classification using CXR images. But, few
examples failed to provide appropriate accuracy
prediction outcomes due to poor image quality.

A Two Dimensional (2D) - CNN model and min-
max scaling was developed [17] for the automated
LD detection using CXR images. But, large class
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Table 1. Lists of notations

Score results. Notations | Description
A hybrid DL model (RVCNet) was presented wh Weights Of Trained U-Net
[18] using CXR images of multiple classes for Hk Bias Variable
predicting LDs. On the other hand, when the data was h Hidden Layer
increased, the performance accuracy decreased. . Number of Inbut Variables
A multi-classification method CDCNet was P
developed [19] which integrates residual network and q N“rf‘be'f of Ne““_’”s
dilated convo9ution to classify LD types using CXR Ag Activation Function
images. However, the models hyper-parameter was n Total Number of Images
not fine-tuned properly lowering the accuracy rate. W, Reference Masks for Each Image
An Auction-Based Optlmlzatlon Algorlthm A Segmented Masks
(ABOA)-CNN model was devised [20] using CXR
) . S C; Cell State
images for the pulmonary disease prediction. But,
this model failed to identify the optimal features le Input Gate
subset which lowers the accuracy rate. Fy Forget Gate
0, Output Cell
3. Proposed methodology ® Convolution operator
In this section, the suggested CovLscan model is X Hadamard product
shown. Fig. 1 pipeline of the suggested model. Table 4 Distinct Training Images
1 lists the notations used in this study. i) Activation Operation
. 0,(X Output Vector of SLFNN
3.1 U-Net based segmentation ,*’( ) P _ —
iy Input Weight respect to z** Hidden Layer
In this model, the U-Net structure is used for b, Bias Weight respect to zt* Hidden Layer
segmentation and it consists of contraction (encoder) a, Output Weight respect to z* Hidden
and expansion (decoder) routes. For down-sampling, Layer
the compression approach uses recurrent 3x3 h Output matrix of hidden layer
convolution functions, RelLU Stimulation and Q Target Output
2x2 kr)nax fp]?oling, Ieach of which increases the total a Output Weights
number of feature layers. ht Moore-Penrose Operation
< > Iy Input Map Selection
Input images CXR FQ) Activation Function
b Training Bias
x Input Activation
v v F(X) Output Activation Node
Feature ResNetS0, ResNetS0, down(.) | Down-Sampling
IR DenseNet121, DenseNetl121, .
Extraction InceptionResNetV2 InceptionResNetV2 XJE - Local features from previous Iayers
and XceptionV3 and XceptionVs X5 Output activation of subsequent layers in
pmmmmon ] | Sy I~ . conLSTM
’ L’ L’ s | Ds Source Domain Data
[ [_ConLST™ couLSTM D m Source Site Value
Transfer v T v | Dy Target Domain Data
Learning i ELM ELM iy Nonlinear Mapping Function in HS
' | E-conLSTM-ELM E-conLSTM-ELM | | Mi () l'th |ayer of the E-ConLSTM-ELM
RS _l ____________________________ . Xs Source Feature Representation
Classification e )(T' Target Feature Representation
1 UL M, i*" layer of E-ConLSTM-ELM for 11
Domain
Result CXR Labels Ly Transfer Loss of MMD

Figure. 1 Entire Pipeline of the Proposed Study
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The expansion route employs up-convolution with 2
x2 transposed convolutions for precision, while
skipping algorithms recover data lost during
shrinkage channel down-sampling, facilitating
feature map transfer. A U-Net structure is created
using CXR and CT image datasets to enhance lung
ROIls, with training efficiency determined by the
configuration of adaptable parameters. The U-Net
structure’s weights are learned from a database and
used to optimize segmentation results on CXR and
CT images, with extra bias projections depicted in Eq.

().

Al = Tk Whoap + by k=12,..,K (1)

InEq. (1), W" denotes the trained U-Net weights,
a symbolizes the input parameter, b* is the value
added as a bias. The model’s hidden layer, input
parameters, and neurons are denoted as h, k and g.
An activation mechanism takes the outcome A as
input and activates or deactivates a neuron. The
Binary Cross-Entropy (BCE) loss operation is used in
this model to estimate the difference between
segmented masks and perceptual typical masks for
every single image of CXR and CT, as stated in Eq.

().

n
1
BCE = —— ZW logW,
n ’ m L0gWyq
q=
+(1 = W,) log (1 — W) (2)

In Eq. (2), n denotes the complete image numbers
used for training, W, provides subjective standard
masks for each CT and CXR image and
Wy contributes segmented masks created by the
model.

3.2 Feature extraction using ensemble pre-trained
CNN models

In this model, the pre-trained CNN models
ResNet50, DenseNet121, Inception-ResNet-V2 and
Xception are employed to extract discriminative and
informative features from the segmented CXR and
CT images which is illustrated below.

ResNet50: ResNet50, a ResNet variation or
Residual Network, is made up of 48 convolutional
layers, one MaxPool, and one average pool layer.
Every convolution unit consists of three convolution
layers, as does each recognition component. ResNet-
50 contains almost 23 million variables that can be
directed.

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024

297

DenseNet121: DenseNet121’s input is a constant
224 x 224 RGB image. DenseNet121 consists of 121
layers, each with about 8 million variables It is
divided into DenseBlocks, with each unit having the
same feature map size but different filter frequencies.
The spaces between the blocks are known as a
transitional layer, and they do batch normalization
during downsampling. Finally, a pooling network
with softmax stimulation is employed to categorize.

Inception-ResNet-V2: It has 164 layers and a
picture input size of 299 x 299. Its fundamental
building block is the Residual Inception Block, which
employs a 1 x 1 convolution filter diversification
layer to increase the filter boundary density. Batch
standardization is implemented on the highest
standard layers. The design features multiple-sized
convolutional filters with residual associations to
reduce deterioration caused by deep networks and
shorten training times.

Xception: It is a modification of the Inception
structure that replaces the Inception elements with
depth-wise independent convolutions. Xception beat
the standard InceptionVV3 on the ImageNet dataset,
achieving greater Top-1 and Top-5 reliability. The
amount of variables in Xception is approximately 23
million.

3.3 Transfer learning and E-conLSTM-ELM for
classification

The extracted deep features from the ResNet50,
DenseNet121, InceptionResNetV2 and Xception are
fed into the E-conLSTM-ELM model to accurately
classify the various LD. In the proposed E-
conLSTM-ELM model, TL is used for knowledge
exchange between features and classes relation
among CXR and CT images and improve the target
task of LD classification. The E-conLSTM-ELM
model learned generated features in the domain and
their variables were preserved throughout the TL.
The model substitutes matrix multiplication with
convolution computations for every gate in the
LSTM cell, allowing it to capture fundamental spatial
properties in multidimensional information.

The most significant component of the functional
ConvLSTM structure is the cell state C; which is
utilized to store the data. If the input gate I, is
triggered, the input value is saved, but if the forget
gate F; is activated, the prior state c;_, is discarded.
Furthermore, the output cell O; determines whether
the current cell state c; is turned into the ultimate
hidden state h;. In this approach, a basic LSTM
model works. However, in the ConvLSTM layer, the
inputs X, X,,X,.....,X, , the cell states
C1,Cy,Cs, ..., Cy, the hidden states
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H,H,, Hs, ....., H, and the gates I, C and O, are all
termed as 3D tensors.

In order to illustrate the ConvLSTM layer, view
the inputs and gates as vectors in a grid-like form in
linear dimension. The ConvLSTM layer predicts the
future state of a cell by gathering the inputs and final
iteration of the local entities of the specific unit. The
constructive steps involved in con-LSTM is listed
below from Egs. (3) to (7),

Fo=oWxp @ Xt + Wyp @ H_q + Wer @

Ceoq + by) )
Iy = o(Wx; @ Xe + Wy * He_q + Wi ® Ceq +
b;) (4)
Or = c(Wxo @ X¢ + Wyo @ Hi_1 + Wo ®
Ci—1+ bp) )
Ct = Ft XCt—1+1t X tanh (WXC ®Xt+WHC®
He_y +b) (6)

Where “ ® ’ indicates convolution, ‘ X ’ indicates
Hadamard product, Wep, We;, Weo and Wy and
b, b;, b, and b, are the weight matrices and bias
vectors will be updated in each update process. The
ELM is combined with conLSTM to enhance the
classification accuracy and eliminate the
computational time. In the given V distinct training
images samples from conLSTM is given in Eq. (8),

V=(X,T,)| X, €EG.,T,€G°€z=1,..,n (8)

The output operation of ELM based on Single
Layer Feedforward Neural Networks (SLFNN) for
updating the h hidden units and j(X) as an initiation
operation which is signified as follows,

0,(X) = ¥t 1a,J(izbsxy),y=1,23..n (9)

In the preceding Eq. (9) 0,(X) represents the
resultant vector of SLFNN in reference to the input
occurrences. The learning factors i, and b, will be
calculated randomly at the hidden layers. The input
weight vector i, is connected with the zt" hidden
layer and input block. b, represents the bias of the
zt" — hidden unit. The stimulation mechanism of the
ELM layer in conLSTM is J(i, b, x,) where
a, connects the resultant weight to the zt" — hidden
and output terminals. The Eq. (10) is compactly given
as
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ha = Q (10)

Where, h represents the generated vector of
hidden layer Eqg. (11), Q and @ denotes the desired
outcome and its corresponding output weights
respectively represented in Egs. (12) and (13)

J (i1, b1, x1) JCip, b, x1)
h = : : (11)
J(iy, by, xy) J(in, b, xy) Vil
-af_
a=|: (12)
ail,,,
_Tl‘s_
Q=1: (13)
-T‘}S- fxe

However, ELM selects the hidden node variables
(e.g., i, b,) arbitrarily and reduces the cost operation
(0,(X) — Q). From a linear algebraic perspective,
Eq. (14) resembles the quadratic calculation with the
outcome weights a can be determined statistically
using a minimal-squares approach.

a=htQ (14)

In Eg. (14), ht employs the Moore-Penrose
modified opposite of matrix A and matrix Q
= [q1, 92, -, Gn]? to determine the resultant weights,
preserving training period by eliminating repetitive
variable modifications with appropriate training
variables such as learning speed and repetitions.

The outermost layer of conLSTM is used to
generate image integration using ELM, which can be
expressed as image vectors. The 4 x 4 x 512 output
map from conLSTM is flattened into a1 x 1 X 512
image vector that is sent to the ELM, allowing the
model’s efficiency to be optimized despite using the
typical FC layer. The layer allocation of CovLscan is
408 layers of E-conLSTM-ELM, 1 layer of flattening
and 8 levels of ELM. The E-conLSTM-ELM design
connects the LSTM convolution and memory layers
with Rectified Linear Unit (ReLU) stimulation and
max-pooling layers in a sequential manner, as shown
in Eg. (15).

X§ = F (Zoe), X2 ® £Sy + b§)  (15)

The resultant feature map is computed using Eq.
(12), which %i includes the local attributes from
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preceding layer. The elements J,, F(.)b$ and 4%,
defines theinput map decisions, stimulation
operation, training bias and parametric kernels. The
guadratic ReLU procedure is utilized to enable the
CNN layers which is defines in Eq. (16) which
improves training efficacy.

F(X) = max (0,X) (16)
Where X is the the node’s input stimulation and

F(X) represents the resultant stimulation. A pooling
layer is employed to minimize overfitting while

minimizing computing nodes and its
computation strain as illustrated in Eq. (17).
X5 = down(Xy™h) (17)

In Eq. (17), down(.) demonstrates down-
sampling, X ~* indicates local attributes from prior
layers and X§ denotes the output stimulation of
following layers accompanied with conLSTM. To
transfer learning weights, compute the variation
between original and target domain sites and select
the closest source domain position. This strategy
improves the reliability of conLSTM model. MMD
is used to divide Kernel Hilbert Space (KHS) to
determine mean discrepancy by deducting the mean
operation of each sample. The mean discrepancy
between two instances can be calculated by
subtracting the mean operation of each sample, often
using the square shape for efficiency. Eq. (18)
represents the actual domain data in a specific source
realm.

(18)

DS = (al, as, ..., am)
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Dr = 1,2, 0 ¥n) (19)
Where y indicates the desired range and n
symbolizes data integer. The negative projection

functions in the KHS of the regeneration kernel are

known as u .Egq. (20) describes the square
representation of MMD.
1
MMDjg (Ds, D) = ”; iz p(ay) —
1 2
T ()| (20)

The variations in dispersion determines the
proximity among two data allocations, with adjacent
domains having a lower MMD value. MMD is
employed in TL to choose the best appropriate source
domain site for transferringto the destination
domain based on resemblance. The mapping
operation M! (.) represents the i* layer of E-
ConLSTM-ELM. CXR and CT imaging data are used
to create depictions aspects of the source (ys) and
target (y7) which is formulated in Egs. (21) and (22),

Ms = mN (..M (x5)) (21)
MT = mN (Ml(XT)) (22)
Mg and My are the resultant feature

representations of the two image domains obtained
by E-ConLSTM-ELM layer The MMD is also
employed in this classification assignment to enforce
the extracted features constraints during TL task.
Since, the TL is also applied in E-ConLSTM-ELM
classification part, the constructed MMD in Eg. (23).

Where a and m denotes the actual domain site S ; -1 1
data and its number correspondingly. Eq. (19) b =maq (mZd ("'mZd(MS)» (23)
represents the expected source information within the
target domain.
— [ | — )
X1 _: 1 * Pl
— u
X7 I P,
—> —> - —> -
. . .
H . — .
w | e — .7 Py
| — I e
InputData ¢\ colution Layers Pooling Layers LSTM Flatten ELM Softmax Predicted
(features) . ' . Class
ReLLU RelLU

Figure. 2 Block Structure of E-conLSTM-ELM architecture
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Eq. (23) is re-modified according to the layers
and is represented in Eq. (24). Assume, M., denote
the " layer of E-ConLSTM-ELM for second
domain 2d, then the transfer loss L, p form the
feature extraction of MMD can be computed as
represented in Eq. (24).

DiT = m%d (mé}l ("-m%d(MT))) (24)

It is shown that the original and desired domains
in conLSTM shares the identical attributes of M*(.)
and M., (.) in which the parameters are independent
to classify the extracted CXR and CT is in Eq. (25)

Lymp = Z?’=1 dl\gIMD (DiSJ DzT) (25)

Finally, the reshaped output features are fed into
softmax layer to classify different types of LD. Thus,
the constructed framework resolve the epistemic
uncertainty issue for immediate detection of various
diseases utilizing CXR images. Fig. 2 show the E-
ConLSTM-ELM layout.

4. Results and discussion
4.1 Dataset description

ChestX-ray8 [21] contains 108,948 frontal-view
X-ray images of 32,717 distinct patients gathered
from 1992 to 2015 with the text-mined eight frequent
condition labels extracted from the text radiography
reports using NLP algorithms. This dataset consists
of eight classes like Atelectasis, Cardiomegaly,
Effusion, Infiltration, Mass, Nodule, Pneumonia and
Pneumathorax.

NIH Chest X-Ray [22] dataset is comprised of
112,120 X-ray images with disease labels from
30,805 unique patients. This dataset constitutes of 14
classes like Atelectasis, Cardiomegaly, Effusion,
Infiltration, Mass, Nodule, Pneumonia,
Pneumothorax, Consolidation, Edema, Emphysema
Fibrosis, Pleural_Thickening and Hernia.
Additionally, the information of COVID-19 and
Non-Covid (normal) is obtained from [25], which
contains 6432 CXR images are taken along with these
two datasets.

Totally, five classes (Covid-19, Pneumonia,
Normal, Infiltrate and Atelectasis) are listed for the
experimental purposes. In order to improve the
pulmonary disease detection from CXR images for
proposed model trained models generated from CT
images are utilized. CT images are collected from
various sources [24-28]. The same classes utilized in
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CXR dataset are taken from the CT images. For the
evaluation, only CXR datasets are used.

4.2 Experimental
evaluation

setup and performance

The implementation of both proposed and
existing model is executed on a system with
MATLAB 2019B using the datasets illustrated in
section 4.1. The collected datasets are individually
divided into 70% for training and 30% for testing.
Table 3 depicts the parameter configuration of both
existing and proposed model. A comparative study is
presented between CovLscan and existing pulmonary
diseases models like AHDL-LDD [10], Efficient Net
v2-M [14], LungNet22 [15], CDCNet [19] and
ABOA-CNN [20]. These proposed and current
models are assessed using accuracy, precision and
recall concisely described below.

Accuracy: It is the ratio of properly classified
instances for every LD classes to the total number of
instances evaluated.

TP+TN

Accuracy = ——
Y = TP+TN+FP+FN

(26)
In above Eq. (26), True Positive (TP) indicates
the model correctly labels LD categories, for example,
Infiltrate is categorized as Infiltrate, while True
Negative (TN) indicates the predictor incorrectly
identifies classes, for example Infiltrate as other
categories. False Positive (FP) indicates the
algorithm correctly classified other categories as
others (other than Infiltrate) and False Negative (FN)
indicates the model incorrectly predict others as
Infiltrate. The same definition is applicable for all
categories of diseases. The average values are
calculated finally for all classes.
Precision: It represents the proportion of correctly
classified instances of LD classes at TP and FP
incidences. It is shown in Eq. (27),

TP
TP+FP

Precision = (27)
Recall: It is the proportion of precisely identified
classified LD instances at TP and FN occurrences in
Eq. (28),

TP
TP +FN

Recall =

(28)

F1-Score: It is stated as the cumulative mean of
precision and recall as in Eq. (28), where 1’ is the
highest and ‘0’ is the lowest potential number.

DOI: 10.22266/ijies2024.1031.24



Received: May 8, 2024.

Revised: July 7, 2024.

Table 3. Parameter Configuration for Proposed and

Existing Models

Model Parameters Range
AHDL- | No. of Convolutional 3
LDD (Conv) layers
[10] Stride 2
Optimizer Adam
Activation Function ReLU
Batch Size 64
No. of Epochs 200
Weight Decay 0.0001
Loss Function BCE
Learning Rate 0.0001
Efficient | Input Layer 4
Net v2- Efficientnetv2-m layer 19
M Optimizer Adam
[14] Activation Function Sigmoid
Dropout rate 0.4
Batch Size 8
No. of Epochs 50
Loss Function Categorical
CE (CCE)
LungNet | No. of Conv layers 3
22 [15] No. of. Maxpooling 2
Layer
Stride 1
Optimizer Adam
Activation Function ReLU
Batch Size 128
No. of Epochs 300
Loss Function CCE
Learning Rate 0.000001
CDCNet | No. of. Conv Layer 2
[19] No. of Dense Layer 2
Optimizer SGD
Activation Function RelLU
Batch Size 64
No. of Epochs 500
Loss Function Mean Square
Error (MSE)
Learning Rate 0.1
ABOA- | Input layer 3
CNN Convolution Kernels 3
[20] Filters 2
Optimizer SGD
Activation Function Tanh
Batch Size 120
No. of Epochs 350
Loss Function Cross entropy
Learning Rate 0.01
Propose | Number (No). of. 23
d model | U-Net Layers Convolutional
Layers with

contracting
and expansive

layers
Stride 2
No. of. Layers - 121
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DenseNet;
No. of. Layers - 164
InceptionResNetV2
No. of. Layers - 71
Xception

E-conLSTM-ELM layers
Input layer (feature) 2
Input dimension 192%x192x3
Conv Layer 64
Kernel size 3
Activation Function ReLU (64)
Batch Normalization 64
Average + Max Pooling | 15 (8+7)
Layers
Number of LSTM layer 98
hidden unit
Time Step 6
Output dimension 4 xX4x 512
Flatten 1
Flatten Input 192x192x3
Flatten output 4x4x512
ELM Input Layer 2
ELM Hidden Layer 4
ELM Output Layer 2
ELM Input 1x1x512
ELM Output 5
Optimizer Adam
Dropout rate 0.6
Activation Function RelLU
Batch Size 64
No. of Epochs 100
Weight Decay 0.0005
Loss Function BCE
Learning Rate 0.001

F1 — score = 2 X Precision-Recall (29)

Precision+Recall

Area Under Curve (AUC): The AUC Score ranges
from 0 to 1 by drawing the Receiver Operating
Characteristic (ROC) curve, which compares the TP
rate (TPR) to FP Rate (FPR) for every possible cut-
off point of a diagnostic test.

Figs. 3 and 4 displays the accuracy (in %)
achieved by AHDL-LDD, EfficientNet v2-M,
LungNet22, CDCNet ABOA-CNN and CovLscan
for diagnosing various LD categories like Covid-19,
pneumonia, normal, infiltrate and atelectasis. The
investigation shows that CovLscan excels than other
models on two datasets. For example, in the
pneumonia categorization, accuracy of CovLscan is
15.76%, 12.72%, 8.33%, 5.49% and 2.09% (for
ChestX-ray8); 15.83%, 12.55%, 7.84%, 5.11% and
2.86% (for NIH-CXR) which is greater than other
existing models respectively.

Figs. 5 and 6 shows the precision (in %) attained
by proposed and existing models.
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Figure. 6 Precision Comparison of LD category prediction models for NIH Chest X-ray
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Figure. 9 F1-Score Comparison of LD category prediction models for ChestX-ray8
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This analysis obtains that the proposed CovLscan
model outperforms other models in predicting each
LD categories using two CXR datasets. For example,
in the case of Covid-19 classification, the precision
of CovLscan is 20.04% and 18.97% greater than
AHDL-LDD, 16.45% and 16.95% higher than
EfficientNet v2-M; 13.07% and 12.89% greater than
LungNet22; 8.19% and 7.31% greater than CDCNet;
3.83% and 2.88% higher than ABOA-CNN models
for ChestX-ray8 and NIH-CXR respectively.

Figs. 7 and 8 depicted the recall (in %) obtained
by existing models. It is determined that the recall of
CovLscan for each LD category is superior to that of
other classification models. For example, in the case
of infiltrate classification, the recall of CovLscan is
20.72%, 16.16%, 11.41%, 6.44% and 2.90% (for
ChestX-ray8); 17.77%, 13.23%, 9.87%, 5.62% and
1.24% (for NIH-CXR) is higher than AHDL-LDD,
EfficientNet v2-M, LungNet22, CDCNet ABOA-
CNN respectively.

Figs. 9 and 10 provides the Fl-score (in %)
obtained by existing models for diagnosing various
LDs categories using two datasets correspondingly. It
is determined that the F1-score of CovLscan for each
LD category is superior than other models. For
example, in the case of normal classification, F1-
score of CovLscan is 20.87% and 17.48% greater
than AHDL-LDD, 16.08% and 13.19% greater than
Efficient Net v2-M, 12.18% and 7.01% greater than
LungNet22, 8.08% and 4.99% greater than CDCNet,
4.77% and 1.36% greater than ABOA-CNN for
ChestX-ray8 and NIH-CXR respectively.
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Figs. 11 and 12 provides AUC obtained by
existing models for diagnosing various LDs
categories using two datasets correspondingly. It
indicates that the AUC of CovLscan is 0.94% and %
greater than AHDL-LDD, 0.83% and 0.79% greater
than EfficientNet v2-M, 0.72% and 0.61% greater
than LungNet22, 0.61% and 0.54% greater than
CDCNet, 0.5% and 0.47% greater than ABOA-CNN
for ChestX-ray8 and NIH-CXR respectively.

In the literature, AHDL-LDD [12], EfficientNet
v2-M [16], LungNet22 [17], CDCNet [21] and
ABOA-CNN [22] model have utilized NIH-CXR
dataset for the evaluation. In this model, ChestX-ray8
have considered for the performance task. Hence, this
work evaluates proposed and existing models on both
ChestX-ray8 and NIH-CXR datasets by using the
parameters as per Table 3. From the above
comparison, it is proved that the proposed CovLscan
model obtains efficient results on both ChestX-ray8
and NIH-CXR datasets for the classification lung
cancer and its categories.

5. Conclusion

In this article, CovLscan model is created to
reduce the ambiguity concerns and improve the LD
categorization efficiency. This method segments the
collected images using U-Net model and pre-trained
CNN models for feature extraction. The con-LSTM
is used for the classification task. The ELM is applied
in conLSTM to reduce computational time and
improve accuracy. TL model is used to exchange
knowledge from CT features and classes to CXR
feature learning. The domain adaptation strategy
reduces domain shift using MMD for efficient
classification. CovLscan model achieves an overall
accuracy of 95.46% and 96.15% on ChestX-ray8
and NIH-CXR datasets, which is greater than AHDL-
LDD, EfficientNetv2-M, LungNet22, CDCNet and
ABOA-CNN. In future, Multi-Scale Generative
Adversarial Network (MS-GAN) model will be
developed to improve the CovLscan by increasing
labeled LD images and generating high-quality target
images from source modal images facilitating
efficient LD prediction.
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