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Abstract

In this work, we investigate a class of fractional delay integro-differential equations
of Caputo type subject to integral boundary conditions. Using the Burton-Kirk fixed
point theorem, we establish sufficient conditions ensuring the existence of solutions,
while uniqueness is verified via the Banach contraction principle. The framework
involves fractional-order derivatives with delays and a Riemann-Liouville type integral
term under nonlocal boundary constraints. To demonstrate the applicability of our
results, a concrete example is provided, supported by numerical analysis and graphical
representations for enhanced understanding.
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Integro-differential equations - Nonlocal condition
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1 Introduction

Fractional differential equations (FDEs) have emerged as powerful tools for modeling
complex dynamical systems, particularly in areas such as anomalous diffusion and
viscoelasticity. Many of these phenomena cannot be adequately described by classical
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integer-order differential equations, which motivates the use of fractional calculus to
capture memory effects and hereditary properties with greater accuracy [12, 15]. In
this context, Kilbas [11] investigated Cauchy problems for nonlinear ordinary FDEs,
establishing fundamental results on existence and uniqueness. This framework has
subsequently been extended to fractional integro-differential equations, which involve
both fractional derivatives and fractional integrals, thereby unifying and generalizing
ordinary as well as partial differential equations [1]. Furthermore, the application
of multidimensional Laplace transforms has facilitated the derivation of closed-form
solutions for fractional ODEs and PDEs [10, 17].

In recent years, significant progress has been made in the qualitative theory of
functional and fractional-order equations [13, 22], with extensive research addressing
stability, boundedness, asymptotic behavior, and almost periodicity. For foundational
developments in fractional integrals and derivatives, one may refer to [5, 16, 18].
Among these, delay differential systems are particularly notable for their rich and
intricate dynamics, often giving rise to stability issues, oscillatory patterns, and even
chaotic behavior [4, 9]. In this context, fractional operators provide a natural and flexi-
ble framework for capturing memory-dependent effects and hereditary characteristics.

Boundary conditions (BCs) play a crucial role in determining the qualitative behav-
ior of differential systems under spatial or temporal constraints. Among these, nonlocal
boundary conditions are particularly significant, as they incorporate the influence of
the entire domain into the boundary behavior of the system [3, 14]. An important
subclass is that of integral boundary conditions (IBCs), which encode global solution
properties directly within the boundary formulation [20]. Such conditions naturally
arise in a variety of applied contexts, including heat and mass transfer, fluid dynamics,
population models, and quantum mechanics. For further detailed studies on IBCs, the
reader is referred to [23, 24].

The study in [19] addressed initial value and boundary value problems for higher-
dimensional nonlinear time-fractional partial differential equations. In contrast, [21]
investigated boundary value problems for nonlinear fractional differential equations
of order 2 < B < 3, establishing existence and uniqueness results by employing
b-comparison functions within the framework of complete b-metric spaces.

DPu(y) +u(y,u(y)) =0, 0<y<lI,
u(0) = u'(0) =0,

1
MD:kAu@Mp

Using fixed point techniques, [8] investigated the existence and uniqueness of solutions
to fractional differential equations with nonlocal boundary conditions defined on the
unit interval.

DPu(y) = f(y,u), 0<y<1,
u(0) — au'(0) = g1(u),
u(l) +bu'(1) = g2(u).
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In a related direction, [7] examined the existence and uniqueness of solutions to
fractional differential equations subject to nonlocal and fractional integral boundary
conditions on the unit interval. Similarly, [6] established the necessary conditions for
the existence of a unique solution to Caputo fractional delay integral boundary value
problems defined on [0, 1].

Motivated by the aforementioned contributions, we propose a novel approach to
establish the existence of solutions for a system of Caputo-type fractional differen-
tial equations. Specifically, we consider a class of complex dynamical systems that
integrates fractional delay integro-differential equations with nonlocal boundary con-
ditions of Riemann-Liouville (R-L) integral type, formulated over an arbitrary finite
interval.

CDg_"_v(x) = AXx)v(x)+ fi (x, Uy, / fg(x,s, v(s))ds) , xeJ:=10,0b],
0

v(0) = ¢,
V'(0) = arIg; v(n),
av(b) +a3v'(b) = f3(v),
v(x) = fulx), —T=x=0. (1.1)

Let CDgL denote the Caputo fractional derivative of order q; € (2, 3], and let Igi
represent the Riemann—Liouville fractional integral of order ¢ > 0, defined for
x € [0,b] and n € [0, 1]. Consider A(x) to be a bounded linear operator on a Banach

space Y. We assume the nonlinear mappings
f1:TIxC[-1,0]xY =Y, fh:AxY—=Y, f3:C[0,b]— R,

are continuous, with the condition f3(0) = 0, where A = {(x,s) : 0 <s < x <
b}. Furthermore, let ¢, ay,az,a3 € R, and fi € C[—rt,0] with f4(0) = 0. If v :
[—7,b] — Y, then for every x € [0, b], we define the history segment

v (@) =v(x +0), 6¢e[-1,0]

For brevity, we introduce the operators

Fu(x) = /(; fz(x, s, v(s)) ds, F(x)=fi (x, Uy, ng(x)).

One of the key advantages of the proposed system is its ability to model complex
processes with memory and delay, such as heat transfer with aftereffects, viscoelas-
tic behavior, and control systems. By establishing existence and uniqueness results
for fractional delay integro-differential equations with integral boundary conditions,
our work provides a rigorous mathematical foundation for the analysis of such sys-
tems. This not only guarantees mathematical consistency but also ensures the stability
and predictability of solutions-an essential requirement for the design, control, and
optimization of practical processes in science and engineering.



208 Page4of23 M. Latha Maheswari et al.

The remainder of this paper is structured as follows. Section 2 reviews the fun-
damental concepts of Caputo fractional derivatives and Riemann-Liouville integrals,
highlighting their essential properties and behavior under different conditions. Sec-
tion 3 is devoted to the analytical techniques employed to establish the existence and
uniqueness of solutions. In Section 4, illustrative examples, together with graphical
interpretations, are presented to demonstrate and validate the effectiveness of the pro-
posed framework.

2 Preliminaries and Notation

In this section, we recall some basic definitions and lemmas required for proving the
main results.

Here Y denotes the Banach space, C(J, Y) represent the Banach space of con-
tinuous functions v(x) satisfying the condition v(x) € Y for x € J = [0, b] and
lvller,y) = megﬁ lv(x)]l. Let B(Y) denote the Banach space of bounded linear oper-

xXe

ators from Y into Y with the norm [|A| g(yy = sup{[AW)II; Iyl = 1}.

Definition 2.1 [11](Riemann-Liouville fractional integral) The Riemann-Liouville
fractional integral Igiv of order g0 > 0,n — 1 < g2 < n,n € N of a function
v e L'(J) is defined by

Igj_v(s)[x] = Igiv[x] = %m) /(x — )1 u(s)ds,
0

where I"(g1) is the Euler Gamma function.

Moreover, for g1 = 0, we set Igjrv := v. For our convenience, let us take Igjrv as
TR

Definition 2.2 [11](Caputo fractional derivative) The Caputo fractional derivative
CD{! v of order g of a function v € AC"(J) is defined by

1 v (5)ds .
=, ifq1 €N,
DL v(x) = T Of (x—s)d1—m a ¢
U(n)('x)’ lfql € N’
where v/ (x) = %,ql > 0(q1 ¢ N),m = [¢q1] + 1 and [g1] is the smallest

integer greater than or equal to ¢;. For our convenience, let us take ¢ Dgﬂrv as € D7y,
Lemma 2.1 [7] Let p, q1 > 0,m = [q1] + 1, then the following holds:
C(ptD _ p—qi

Cpaiyr — ] Tp—q1+D)
0, pef0,1,....,m—1}.

, (peNandp>morpé¢Nand p >m — 1),
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Lemma22 [2, 7] Let p > q > 0, and f, g € L'(J). Then the following holds:

Q) 1719 f(x) = 1774 £ (x).
(i) I1P19f(x) = 1917 f(x).
(i) 17{f(x) +g0)} =17 f(x) + IPg(x).
(iv) IPCDP f(x) = f(x) = f(0),0 < p < 1.
V) CDPIP f(x) = f(x).
i) CDP f(x) =1""PDf(x) =I"Pf'(x),0 < p < 1.
(vii) CDPEDY f(x) # DI f(x).
(viii) €DICDP f(x) # € DPC DY f (x).
(ix) CDPI9f(x) = 1977 £ (x).
From the above observation, it is clear that the Riemann-Liouville and Caputo frac-
tional differential operators do not possess the semigroup or commutative properties
that are inherent to classical integer-order derivatives. For fundamental results and

detailed discussions on fractional integrals and derivatives, the reader is referred to
[11, 12, 16, 18].

Lemma 2.3 [7] Let q1 > 0. Then the following holds:
m—1 )
17 (CDMy(x) = v(x) + Y bix',
i=0
forsomeb; e R,i =0,1,--- ,m — 1, wherem = [q1] + 1.

Lemma 24 [7] Letq; > 0,v € LYT,R) ThenVx € J, the following holds:
(19 v()| < 17 v ().

Lemma 2.5 [7] The fractional integral 19", q; > 0 is bounded in L' (T, R) with

90 < e
T+ D)

Lemma 2.6 [7] (Burton and Kirk fixed-point theorem) Let A1, A> : ¥ — Y be two
operators on a Banach space Y, such that A1 is a contraction and A, is completely
continuous. Then, either

(a) the operator equation v = A1(v) + A2(v) has a solution, or
(b) theset Q={veyY: AAl(%) + AA2(v) = v} is unbounded for A € (0, 1)

holds.
3 Main Results
In this section, we first present several preliminary lemmas and then establish the

existence and uniqueness of solutions to the boundary value problem (BVP) (1.1) by
employing fixed point theorems.
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Now, we assume the following conditions to prove the required results for the
system of equations (1.1).

+1
(H1) él = b(azb+2a3) (M1 — 1)~ (arb+a3) M2 £ 0, axb # —2a3, 4z #

(H2) There exists [ € L'(7, R) such that

| f1(x, ug, vp) — fi(x, uz, v2)lly < l(x)<||u1 —uUzlloo + V1 — vzll),

where vi,v» € Y, uy,ur € C, =C[—x,0],x € J.
(H3) Let L, be a positive constant such that

I f2(x,s,u) = falx,s,v)|ly < Lallu—vlly, whereu,v €Y.
(H4) There exists a positive constant L3 such that
I f3(u) = f3)II < L3llu — vl 7, whereu,v € C(J).

(H5) A : J — B(Y) is a continuous bounded linear operator and there exists a
constant L4 > 0 such that

A By) < La.

(H6) There exists a non-negative function p € L'(7, Ry) such that

I fi(x,u, v)lly < ﬁ(X)<1 + llullo + I|v||>, where (x, u,v) € J x Cx x Y.

For our convenience, let us assume

ay (a2b + 2a3)b _2ap ( ajn92t? ) maas
m=——>:-—- my = m3 = ——-,
Ly (g2 +3) az
o < n42 ) ai (agb + a3)
my =——, ms=my—m| ———— |, mg=———""7,
as Fg+1) Ly
mp(ayb +a3) —ap m3(ab +a3) — a3 —my(azb +az) — 1
my=——————, mg—= ——"—, my= ———"J9¥#/™Z¥—"
b(axb + 2a3) b(axb + 2a3) b(ayb + 2a3)
ai(axb +az)nt2
1o = mop — A2 T @)™
LiT(g2+ 1D
3.1
Lemma 3.1 Consider the following system for y € C(J,Y), q1 € (2, 3],
C
DT (x) = y(x), (3.2)

with the boundary conditions
v(0) = ¢, V(0) =al®v(n), av(b)+azv'(b) = f3(v), (3.3)
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then the unique solution of the system is given by

v(x) = 19y (x) + (mex? — mx) [T y(n) + (m7x? — max) 19 y(b)

+(mgx® — myx) 11" y(b)
+(mox? — max) f3(v) + (m1ox* — msx — Deg.

Proof Applying 19! to both sides of € D91 v(x) = y(x), we obtain

I <CD‘11 v(x)) = I1y(x).

v(x) = I9y(x) — bg — b1x — byx?, by, by,

From v(0) = ¢,we know that —bg = ¢. Hence we obtain,
v(x) = I y(x) + ¢ — bix — byx?.

Also from v’ (0) = a1 192v(n), we have

q2+1 qr+2
(L _ 1>b1 L A 1 ) —ay
(g2 +2) (g2 +3)

Then by axv(b) + azv'(b) = f3(v), we get

szR.

(34)

q2

Ng+07

(a2b + a3)b1 + (a2b + 2a3)bby = a2 [1'y(b) + a3 11" y(b) — f3(v) + aze.

Hence,

—al(a2b+a3)
Ly

+( a N 2a1az(axb + az)n?2+?

b(agb +2a3)  Lib(azb +2a3)I'(q2 +3)

by 192441y ()

>1q2y(b)

{al(a2b+a3)nqz ( ap Zalaz(a2b+a3)nq2+2 )}
- @
3)

_|_
LiT(gx+ 1) b(a2b+2a3) L]b(a2b+2a3)r(q2 +
( as 2a1a3(a2b +a3)r]q2+2
b(azh +2a3) * Lyb(azbh + 2a3)T (g2 +3)

( 1 N 2a; (azb + a3)n‘72+2
b(a2b+2a3) L]b(a2b+2a3)r(q2 +3)

)lq’fly(b)

>f3(v)

= —meI 2Ty () —migp — m7192y(b) — mg I~ y(b) — mg f3(v).

a nq2+2
(g2 +3)

b+ 2a3)b 2
by = M[‘H‘Fq}y(n) _2
Ly Ly
2a3 (a2 4 ®)
Ly \T(q2 +3) y

)1’“ y(b)

+2 +2
42 (aqu )f3(v)— {2“2< apn®? )_ (“2b+2a3)b(

Ly \T(g2 +3) Ly \T(q2+3) Ly

)}
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= m IPH Iy () + mo I y(b) + m3 11" y(B) + my f3(0) + ms.
Substituting in equation (3.4),

v(x) = 19y (x) + (mex? — mx) 12T y(n) + (m7x? — max) 19 y(b)
+(mgx® — max) 11y (b)

+(mox? — max) f3(v) + (mox*

—msx — 1)o.

According to Lemma 3.1, v solves BVP (1.1) if and only if it satisfies

T A(s)v(s)[x] + 190 F (s)[x]

+(mex? — mx) 192 A(s)v(s)[n] + 12T F(s)[n]]

+(m7x? — max)[19 A(s)v(s)[b] + 19 F (s)[b]]

+(mgx? — m3x)[I1 Y A(s)v(s)[b] + 111 F (s)[b]]

—l—(mgx2 —myx) f3(v) + (m10x2 —msx — 1), ifx eJ,
fa(x), if x € [—7,0].

v(x) =

Define an integral operator T:Y — Y by

T A(s)v(s)[x] + 19 F(s)[x]

+(mex? — mx) 192 A(s)v(s)[n] + 12T F (s)[n]]

+(m7x? — mypx)[I1 A(s)v(s)[b] + 191 F (5)[b]]

+(mgx? — m3x)[11 P A(s)v(s)[b] + [1 1 F(s)[b]]

+(mox? — mux) f3(v) + (m1ox* — msx — g, ifxeJ,
fa(x), ifx e [—1,0].

(Tv)(x) = (3.5)

Define the operators 71, T3 :

19V A(s)v(s)[x] + T91 F(s)[x]
+(mex? — m)IR2FTNA(s)v(s)[n] + 19259 F(5)[n]]

(Tv)(x) = {  +(m7x% — max)[191 A(s)v(s)[b] + 191 F(s)[b]]
+(mgx? — m3x)[IN L A(s)v()[b] + I F(9)[b]], ifx e T,
Sfa(x), if x € [-7,0],

(mox? — mgx) f3(v) + (m1ox* —msx — g, ifx e J,

T =
(Trv)(x) 0. if x € [—7,0].

It is obvious that Tv = Tyv + Thv.

Lemma 3.2 Suppose A(x) be a linear operator on Y which is bounded, f; € C(J X
C[—7,0] x Y, Y). Then v € Y solves BVP (1.1) if and only if Tv = v.
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Proof Consider v as a solution of BVP (1.1), satisfying all the equations in (1.1). From
Lemma 3.1, we deduce that

v(x) = 1T A(s)v(s)[x] + T9 F ($)[x] + (mex? — m1x)[192T9 A(s)v(s)[n]
+12HDF (s)[n]]
+(m7x* — mox) [T A(s)v(s)[b] + I1' F (5)[b]]
+(mgx® — mzx)[19 " A(s)v(s)[b]
+IDTVE($)[b]] + (mox? — max) f3(v) + (miox* — msx — g = Tv(x).

Conversely, v satisfies

v(x) = Tv(x)
= [T A()v($)[x] + T1 F(s)[x] + (mex? — myx)[I2T1 A(s)v(s)[n]
+IPTNE(5)[]]
+(m7x? — mox)[19 A(s)v(s)[b] + 11 F(5)[b]]
+(mgx® — myx)[197" A(s)v(s)[D]
HITVE ()b + (mox? — max) f3(v) + (m1ox* — msx — D).

v(x) =19 [A(s)v(s) + F(s)][x] + (mex* — mx)[2H0 |:A(s)v(s) + F(s)i|[17]
+(myx% — mpx) 19! |:A(s)v(s) + F(s)}[b]

+(mgx? — mzx) 9~} [A(s)v(s) + F(s)}[b]

+(mox? — max) f3(v) + (migx? — msx — De.

and denote y(s)[x] = [A(s)v(s) + F(s)]lx]. Accordingly, the preceding equation
may be expressed in the form,

v(x) = I7y(s)[x] 4+ (mex? — myx) 112 y(s)[n] 4+ (m7x? — max) 19y (s)[b)
+(mgx® — m3x) 117 y($)[b] + (mox? — max) f3(v) + (m1ox> — msx — D).

According to Lemma 3.1, it is clear that v(x) satisfies (3.2) and (3.3). Hence, v(x)
satisfies

CDDy(x) = y(s)[x] = A(s)v(s)[x] + F(s)[x], x €T,
v(0) = g,
v'(0) = ar I v(),
aru(b) + azu’ (b) = f3(v),
v(x) = fa(x), x e[-r1,0]
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Hence, v satisfies the given BVP (1.1).
Therefore, v is a solution of BVP (1.1) if and only if Tv = v. O

Before presenting the main results, we establish some notations that will be used
throughout the work.

00 = (La+ (1 +La)llI)
Lt Imlb? + malb,  molb? + b |mslb? + pmslb

Qr= T(q1) T(q1 + q2) Tigi— 1)
02 = (Img|b* + |m4|b), 03 = (Im1olb* + Imslb + 1)| fal.

We proceed to state our main results. A uniqueness result is obtained by applying the
Banach contraction principle.

Theorem 3.1 Suppose that (H1) - (H5) are satisfied. If

Z,= Q001+ 02L3 <1,

then the BVP (1.1) possesses a unique solution on the interval [—1, b].

Proof Letu,v € Y and T be the operator defined in (3.5). Then for each x € J, we
have

[(Tu)(x) = (Tv)(x)|| < I [|[A(s)u(s) — A(s)v(s)]Lx]]
HIMN[f1 (s, us, Fau(s)) — fi(s, v, Fav(s))]lx]

Himexr® = mix | {124 [A@u(s) = Al
FIEE[fi(s, w5, Fau(s)) = fi(s, v, () il
Hmra® = max | {1 [A@u(s) — A ]l
A1 (5, s, Fau)) = fi(s, v, F2v()]1511
Hlmsx? = max|{ 197 | [A@u(s) = A ]ib1]
1A (s s, Faus)) = fi(s. v Fao() o1l |
Hlmox® — max {1 f3) — @}

It can be seen from (H2) that,

I fi(x, ug, vp) — fix, uz, v2)lly < l(x)<||u1 —uzlloo + 1 — v2||>-

Hence,

11 (s, us, Fau(s)) = fi(s, vs, F2v(s))lly < l(x)<||us — vl 4+ 1 Fau(s) — sz(S)H)-
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It can be seen from (H3) that,

| falx,s,u) — folx,s,v)ly < Laflu—vly.

On substituting, we get

I1£1(s, us, Fau(s)) = fi(s, vs, F20(s)) |l < l(x)<||us — VUslloo + Lallu — UIIY>-

<1(x)(1 + Ly)llu — v|.
Similarly, [A(s)u(s)[x] — A(s)v(s)[x]I = NA) ([l — v][[x].
Since A(x) is a bounded linear operator and from hypothesis (HS) we have, ||A(s)|| <
Ly4. Hence |A(s)u(s)[x] — A(s)v(s)[x]ll = Lallu — vll[x].
Similarly from (H4),
I f3) — f3()Il < L3llu — vl

Applying the above, we get

|76 = Tl < 19 (Lallu = vl 1]+ 19 (1) (1 + La)lu = vl [x]

Hlimex® = mux|| 1950 (Laflu = o] ) in) + 1259 (1)1 + L) | - vll)[n]}

i = mox {19 (Lallu = o] ) 61+ 19 (1) (1 + Lo) 1 — v||)[b]}

s = max {197 (Laflu = ] ) 161+ 19 (1) (1 + Lo)lju - v||)[b]}
Hlmox? — max|[{Lallu — vl }
= {Lal® 131+ (1 + L) 17 )]
Hlmex = mix | (Lal 0[]+ (1 + L)1 () n))
Hma? = maxl|(Lal® 6] + (1 + L)1 ((s)[b])
Himga® = max | (LT [B] + (1 + L) 19 6)IB) e — v
Hlmox? —max||(Lsllu — v))

< {Luql ]+ (1 + L) I A(5)e] + (imolb? + [m1 [b)
(Lar™ 1 m + (1 + L)1 (5
+(m71b? + malb) (L7 (b1 + (1 + La) I () [b])
+(imsb? + m3lb) (Ll b] + (1 + L)1~ A(5))[0]) } e =]

+(|mo|b* + |ma|b)(L3lu — vl|)
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m|b* + |m1|b

< {(L4+(1+L2)||l||)|:r(ql) F(qz-i—éh)

Im71b® + Ima|b*  |ms|b® + |m3|b2}
T'(q1) T(g1 — 1)

+(|mo|b* + |m4|b>L3}||u — v

< {Q0Q1 + Q2L3}IIM —vl.

For every x € [—1, 0], we have ||(Tu)(x) — (Tv)(x)|| = 0.

Hence for every x € [—1, D], we have

(Tu)(x) = (Tv)()| < {Q0Q1 + Q2L3}Ilu — .

Owing to Qo Q1 + Q2L3 < 1, it follows that T is a contraction mapping.
Consequently, the Banach contraction principle ensures that BVP (1.1) has a unique

solution. This concludes the proof.

We now present some existence results, derived using the Burton and Kirk fixed-

point theorem.

Theorem 3.2 Assume that (H1) - (H6) holds. If

Ze=01(La+1pl(A+ L2)) + Q2L3 < 1

(3.6)

then BVP(1.1) possesses at least one solution on the interval [—1, b].

Proof Let T : Y — Y be defined according to (3.5).

Step 1: To prove that 77 : Y — Y is continuous. Let u,v € Y. When u — v,

namely |lu — v|| — 0, we have

sup 19| fi(s, us, Fau(s)) — fi(s, vs, Fov(s))|[x] — 0,

xeJ

sup 11792 £y (s, ug, Fou(s)) — fi(s, vy, Fav(s))|[n] — O,

xeJ

sup 19 fi(s, us, Fou(s)) — fi(s, vy, Fav(s))|[b] — O,

xeJ

sup 17| fi(s, us, Fau(s)) — fi(s, vs, Fav(s)|[b] — 0.

xeJ

Also,

IT1u(x) — Tiv)| < T A()uls) — A)v()[x]+ I fi(s, us, Fouls))

—f1(s, vs, Fou(s))|[x]

lmex? = mux| (19 A@u(s) = AV ]
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I fi (s, g, Fau(s) = fils. v, Fao(s) D)
+lmx? — mle(lq‘ [A()uls) — A(s)v(s)[[P]
I fi(s s Fau(s)) = fi(s. v, Fv(s))IIB))
mgx? = max| (197 1AGu(s) = AG(6)IE]

HINY fi (s, ug, Fau(s)) — fi(s, vs, Fav(s))[[b].
Then,

ITu(x) — Tivx)] = Sug | Tiu(x) — Thv(x)|

< sup 17" |A(s)u(s) — A(s)v(s)|[x]
xeJ

+ Sug I fi(s, us, Fou(s)) — fi(s, vs, F2v(s))|[x]

+ sup mex® = muxl (1972 Au(s) — As)u(s) D]
xeJ

IR f1(s. s, Fau(s)) = fils. v, Fv(s))]n))

+ sup |m7x® — max| (1‘11 |A(s)u(s) — A(s)v(s)|[b]
xeJ

+I19 f1(s, ug, Fau(s)) — fi(s, vs, F2U(S))|[b]>

+ sup |m3x2 - m3x|<1q1_1|A(s)u(s) — A(s)v(s)|[b]
xeJ

I fi (s, s, Fau(s) = f1(5. v, F2v(s)[5])

< sup I A(s)u(s) — A(s)v(s)|[x]
xeJ
+ sup 19 fi(s, us, Fou(s)) — fi(s, vs, Fov(s))|[x]
xeJ
+ sup |mex? — leI(I‘““IA(S)u(S) — A(s)v(s)|[n]
xeJ

HIUFR| fi (s, us, Fau(s)) — fi(s, vs, sz(S))I[f/]>

=+ sup |m7x2 — m2x|(1q1 [A(s)u(s) — A(s)v(s)|[b]
xeJ

19 fis. s, Fau(s) = fi(s, v, Fav(s))|[1)

+ sup |mgx? — max| (1‘11*1 |A(s)u(s) — A(s)v(s)|[b]
xeJ

197 fi(s, s, Fau(s) = fis. vy Fao@)le])-
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From the above inequality, when u — v, ||Tiu(x) — Tjv(x)|| — O, implies the
operator T is continuous.
Step 2: Define B, = {v € Y : |lv|ly < r,r > 0}. Let there exist nonzero real
constant P; such that P; = (m?XA | f2(x, s, 0)|. We will prove T7(B,) is bounded
X,8)€

and equicontinuous. For every v € B, and for every x € J, we have

[(T1v)(x)| < [T7 A()v($)[x]] + [T F(s)[x]]
+l(mex* — my0)|[[192T4 A(s)v(s) ]l + 12T F(s)[n]l]
+(max? — mox)|[[19 A(s)v(s)[b]] + [19 F (s)[b]]]
+l(mgx® — max)|[[17 T A(s)v(s)[D]] + 119 Fi(s)[b]]].

By (H3), (HS) and (H6), we get

[(T1w) ()| < Lalloll[ 19 [x]] + 19 p()[xXI(L + o]l + | F2u(s)])]
+l(mex* — myx)|[Lalv]| 1920 ]
HIPT B () [](1+ vl + [ Fav(s) D]
+l(m7x? — max)|[Lalo 119 [61] + |17 p()[BI(L + [[v]] + | F2v(s)ID)]]
+l(mgx* — m3x)|[Lalv )| 19 [b]|
FHIT T B BIA + vl + [ Fav(s) IDI].

From (H2), Lemma 2.4 and Lemma 2.5, we obtain

[(Tiu)(x)| < Lalwl| 17 [x]] 4+ (1 + (vl (1 + L2) + PO p(s)[x]]

+l(mex? — myx)|[Lallvll 129 [x]| ]|

+(1+ [0 (1 + Lo) + PO p(s)[n]l]

+l(max® =m0 [N B + (1 + (o)1 + L) + PO p(s)[b]]]
+l(msx® — max)|[[v]| |19 [b]]

H(L+ 01+ Lo) + PO p(s)[b]]]

Lar[I9[x]] + (14 r(1 + Ly) + PDITY p(s)[x]]

+(Img|b* + [m1|B)[ Lar | 12+ [x]|[n]]

+(1+r(1+ Ly) + PDIIPT j(s)[n]]]

+(Im7|b? + |mo|B)[Lar| 19 [b]] + (1 + r(1 + Lo) + P p(s)[b]]]
+(Img|b* + [m3|b)[ Lar| 197 [b]|

+(1+7(1+ L) + PO p(s)[b]]]

(T < Lar Q1+ (1470 + L) + P ) I51Q1.

IA

1T < sup (T < @1 (Lar + (1470 + Loy + P )151).

xeJ
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Hence T (B,) is bounded.
Now, we will prove that T} (B, ) is equicontinuous.
Let, i
= Sup{lfl(x v, u)| s vl <, flull < Lor + Py}

XE

Let x1, xp € [—7,b] with x| < xo, v € By,
Case (i): If 0 < x; < xp < b, then

[(T1v)(x2) — (T1v) (x| < m/(}éz )1 A () v(s)|ds

X1

_%q]) (x1 — )T A v(s)lds

r( )f(xz—s)q‘ Y £1(s, vs, Fou(s))lds

o )/<x1—s>ql (5. vs. Fau(s))lds

| Im1(3 = 2 + Imal 2 = 20) | (1 [AG) (BT + 19 F(s)][b])

< %ql) ((X2 — )M —(x —s>q11)|A<s)v(s>|ds

T )fm—s)‘“ NA@)v(s)lds

+;/ ((X2 — )M —(x —S)‘“_1>|f1(s, vy, Fou(s))|ds
C(g1)

o )/(X2—S)q' U f1 (s, vy, Fao(s))lds

+(x2 - xl){[zmma I | (121 A (o)) + 19521 F () L)

+[ 2Bl | + Il [ (114G (o)1 B] + 191 F ()] 15])

ol (3 = x]) + It (2 = ) | (19721 A0 0] + 1972 F s) D]

| ms| (3 = x]) + I3l 2 = x20) | (197 1AV 6] + 197 F(9)] 1)
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+[261mg| + mal] (171 1A (oI B] + 141—1|F(s>|[b1)}

2b|m6| + |m g1+

~ 1
< (x2 —x1)2(Lgr + M)|: b1 +

[(q1) (g1 + q2)
2b|m7| + Imzlbq, N 2b|mg| + |m3|bq1_1].
I'(q1) I'(gi — 1)

Case (ii): If —7 < x; < 0 < xp < b, then
[(T1v)(x2) — (T1v)(x1)| < [(T1v)(x2) — (T1v)(O)] + [(T1v)(0) — (T1v)(x1)]

< s / (12— )71 A(s)u(s)|ds

+%ql) O/(Xz — )M fi(s, vs, Fav(s))lds

| Imelod + Imilxz | (1921 AV + 1721 fi (5. vy, Fav (o) D))

| 13 + iz | (1714 D]+ 1 £i (s, 5, F2v(s) 15])

| Imslod -+ Imslxz | (197 1AGVIB]+ 177 fi(s, v, Fav(s))I1)

+| fa(x1)|
<(L4r+M)x2|: L gy el il g | Blmal o]

n a1
I'(q1) I'(g1 +q2) ['(q1)

b + -
Dlms| £ m3] g, 1i|+|f4(x1)|-

INCIR)

Case (iii): If —7 < x| < x2 <0, it can be seen from the definition of f; that

[(T1v)(x2) — (T1v)(x1)] = | fa(x2) — fa(x1)].

From Case (i) - Case (iii), it follows that 77 (B;) is equicontinuous.
Step 3: We now show that 7 is contraction. Consider u, v € Y. From (H4), we
have

[(Tou) (x) — (Do) (x)] < [(mox? — max)(f3(u) — f3(v))]
< <|m9|b2 + |m4|b> | 5@) — f3(0)]

OoLsllu—v| VxeJ.

sup |(Tou)(x) — (Trv)(x)]
xeJ

IAIA

[(T2u) (x) — (T2v)(xX) ||
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= QoLsllu — vy < [lu —v].

Hence T is contraction.
Stepd:LetQ ={veY: )\Tz(%) + AT (v) = v, A € (0, 1)}. Forevery v € €,
there exists A € (0, 1), such that

v(x) = X[Iq‘A(S)v(S)[X] + I F (s)[x] + (mex? — m1x)[IPT9 A(s)v(s)[n]

+ICTF(5) ] 4+ (m7x? — max)[T7 A(s)v(s)[b] + 19 F(s)[b]]
+(mgx? — max) 11 A(s)v(s)[b] + 117 F(s)[b]]

+(mox* — max) f3 (%) + (myox* — msx — l)w]-
From (H5) and (H6),

lv(x)| = W[I[“ | A )]+ 19 [F(5)|1x] + (Img|b* + [m1|B)TEHA(s) ()| [n]

HICTFE(5)[[n]] 4 (Im7|b* + Ima|b)[I91|A(s)v(s)|[b] + I9|F (s)|[b]]
+(lmg|b* + |m3|b)[IT " A(s)v(s)|[b] + [1 | F(5)|[b]]

+(molb? + |m4|b>|f3(§)| + (miolb® + Imslb + 1>|¢|]

< [unvnlf[x] + (PN + Il PN + Lol 11 + Prlpl) 1 L]
+(molb? + ma[B)]| Lallvl 19+ )
+(Upl+ 10l 121+ Lalloll o1+ Prlpl ) 194201
(a2 + malb)]| Lallvl 19'[5]
+(1pl -+ 1l 1l + Lallol 11+ Pillpl ) 19151
+(imslb? + mlb)| Lalloll 1" [b]
+(1pl + 1l 1l + Lallol 11+ P1||p||)1q'—1[b]ﬂ
+(imolb? + ImalB) 211 f3()1 + (maolb? + Ims[b + 1|

< L4|lvlI Q1 + (Ilpll + vl llpll + Lallvll I pll + P1||P||>Q1
+QoLs|vl| + Q3, VxeJ.
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Thus, we have

vl < Lallvl| Q1 + (IIPII + il el + Lol el + P1||P||)Q1

+0O2L3lvll + O3 + |l fallo-
Hence, we obtain

IpI1Q1(d + P1) + O3 + |l f4ll

ol < .
1= [Qi(La +1pI( + L2) + 0215

It follows that 2 is bounded. Hence the operator T has atleast a fixed point, which is

the solution of BVP (1.1).

4 Numerical Example

O

In this section, we present an example to demonstrate the application of our results to

the class of fractional delay integro-differential equations with and IBCs.

Example 4.1 Consider the fractional delay integro-differential equations associated

with IBCs of the type

. B i L mx e “v(x)
Diy(x) = %0 (1 +sm( > >> + G5+ e (1 +v(x))

X

1 S’ < )
0

v(0) =1,
V' (0) = 1°°v(0.25),

4v(3)+6V'(3) = é/x v(s)ds,
0

1
U(X)Zﬁ, —3§x§0

“.1)

Solution: In view of problem (4.1), we get L1 = —65.568239, and we observe from
equation (3.1) that m; = —1.098093, my = 0.001147, ms3 = 0.001721, m4 =
—2.868206e=%, ms = 0.620680, mg = —0.274523, m7 = —0.055269, mg =

—0.082903, mg = —0.013817, myo = 0.113432.
Forevery x € 7 =10, 3],q1 = %, we get

| f1(x, uy, v1) — filx, uz, v2)|| < H et ( uy(x) uo(x)

S +e")
+ H (Fz(m) — Fz(Uz)) N

I +u1(x) (1 +us(x))
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< H Gren ‘ [Ilul —usll + [ F2(v1) — Fz(vz)ll]-

Similarly for every x € 7, we obtain

X X

1
I fax,s,u1) — falx,s,u2)| < I /ul(S)ds —/uz(S)ds <O0.1I(uy —u|l -

0 0

Hence for x € J, we obtain

I f1Cx, ur,v1) — fi(x, uz, v2)|| < H

‘ [Ilul —uz|| + 0.1 (uy — uz)ll]

(5+e¥)
1
= Hm 10 lg — uzll.
1 X X
I f3(v1) = f3(v2)ll < 3 /Ul(s)ds —/vz(S)dS <02 —v)l.
0 0

A

e ¥ u(x) ;
1wl = <5+eX><<1+u(x>>>” 10/”(”‘“

— |1 .
oo H + llull + ||v||]

1 1
A < 80<1+s1n )H_SO<1+1) =

Hence from the above, we get ||/|| = 0.0111, | p|| = 0.0023, L, = 0.0588, L3 =
0.2, Lg = 0.025, Qo = 0.0451, Q; = 18.3305, Q> = 0.1252, Q3 = 3.8829,
and hence from Theorem 3.2,

IA

Ze = Qi1(La+ lIpll(1 + L2)) + Q2L3 = 0.6807 < 1

is satisfied. Similarly from Theorem 3.1,

Zy=0100+ 02L3 =0.8515 < 1

is also satisfied. Hence, all the hypotheses are fulfilled. As stated in Theorem 3.1 and
Theorem 3.2, the considered problem has a unique continuous solution in 7.

It is evident from Figure 1 and Figure 2 that, for the given problem (4.1), the
hypotheses of Theorem 3.2 holds true.

Furthermore, it is evident from Figures 3 and 4 that, for the given problem (4.1),
the hypotheses of Theorem 3.1 are satisfied. Hence, from Figures 14, it follows that
there exists a unique continuous solution for the BVP (4.1) in the interval 7.
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Fig.1 Z, values for x € [0, 3]

qa, 2 0 X

Fig.2 Z, values for x € [0, 3], q1 € (2, 3]
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Fig.3 Z, values for x € [0, 3]

0.8

q, 2 0 X

Fig.4 Z, values for x € [0, 3], ¢1 € (2, 3]

5 Conclusion

In this study, we have established existence and uniqueness results for fractional delay
integro-differential systems of Caputo type subject to nonlocal integral boundary con-
ditions. Uniqueness was demonstrated using the Banach contraction principle, while
existence was guaranteed via the Burton-Kirk fixed point theorem. To illustrate the
applicability of the theoretical findings, a numerical example was presented, highlight-
ing the effectiveness of the proposed framework in addressing real-world problems.
As a direction for future research, this work may be extended to explore controllabil-
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ity and stability properties of such systems, thereby further enhancing their scope and
practical relevance.
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