

Solvability of nonlocal boundary value problems for fractional delay integro-differential equations by using fixed-point technique

M. Latha Maheswari¹ · R. Nandhini¹ · V. Vijayakumar²

Received: 2 September 2025 / Accepted: 30 September 2025 © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025

Abstract

In this work, we investigate a class of fractional delay integro-differential equations of Caputo type subject to integral boundary conditions. Using the Burton-Kirk fixed point theorem, we establish sufficient conditions ensuring the existence of solutions, while uniqueness is verified via the Banach contraction principle. The framework involves fractional-order derivatives with delays and a Riemann-Liouville type integral term under nonlocal boundary constraints. To demonstrate the applicability of our results, a concrete example is provided, supported by numerical analysis and graphical representations for enhanced understanding.

Keywords Fractional differential equations \cdot Boundary value problem \cdot Integro-differential equations \cdot Nonlocal condition

Mathematics Subject Classification 26A33 · 34B10 · 34B37 · 45J05

1 Introduction

Fractional differential equations (FDEs) have emerged as powerful tools for modeling complex dynamical systems, particularly in areas such as anomalous diffusion and viscoelasticity. Many of these phenomena cannot be adequately described by classical

Communicated by Palle Jorgensen.

 M. Latha Maheswari lathamahespsg@gmail.com

R. Nandhini nanmathpsg@gmail.com

V. Vijayakumar vijaysarovel@gmail.com

Published online: 14 October 2025

- Department of Mathematics, PSG College of Arts & Science, Coimbatore 641014, India
- Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India

208 Page 2 of 23 M. Latha Maheswari et al.

integer-order differential equations, which motivates the use of fractional calculus to capture memory effects and hereditary properties with greater accuracy [12, 15]. In this context, Kilbas [11] investigated Cauchy problems for nonlinear ordinary FDEs, establishing fundamental results on existence and uniqueness. This framework has subsequently been extended to fractional integro-differential equations, which involve both fractional derivatives and fractional integrals, thereby unifying and generalizing ordinary as well as partial differential equations [1]. Furthermore, the application of multidimensional Laplace transforms has facilitated the derivation of closed-form solutions for fractional ODEs and PDEs [10, 17].

In recent years, significant progress has been made in the qualitative theory of functional and fractional-order equations [13, 22], with extensive research addressing stability, boundedness, asymptotic behavior, and almost periodicity. For foundational developments in fractional integrals and derivatives, one may refer to [5, 16, 18]. Among these, delay differential systems are particularly notable for their rich and intricate dynamics, often giving rise to stability issues, oscillatory patterns, and even chaotic behavior [4, 9]. In this context, fractional operators provide a natural and flexible framework for capturing memory-dependent effects and hereditary characteristics.

Boundary conditions (BCs) play a crucial role in determining the qualitative behavior of differential systems under spatial or temporal constraints. Among these, nonlocal boundary conditions are particularly significant, as they incorporate the influence of the entire domain into the boundary behavior of the system [3, 14]. An important subclass is that of integral boundary conditions (IBCs), which encode global solution properties directly within the boundary formulation [20]. Such conditions naturally arise in a variety of applied contexts, including heat and mass transfer, fluid dynamics, population models, and quantum mechanics. For further detailed studies on IBCs, the reader is referred to [23, 24].

The study in [19] addressed initial value and boundary value problems for higher-dimensional nonlinear time-fractional partial differential equations. In contrast, [21] investigated boundary value problems for nonlinear fractional differential equations of order $2 < \beta \le 3$, establishing existence and uniqueness results by employing b-comparison functions within the framework of complete b-metric spaces.

$$D^{\beta}u(y) + u(y, u(y)) = 0, \quad 0 \le y \le 1,$$

$$u(0) = u'(0) = 0,$$

$$u(1) = \lambda \int_0^1 u(p)dp.$$

Using fixed point techniques, [8] investigated the existence and uniqueness of solutions to fractional differential equations with nonlocal boundary conditions defined on the unit interval.

$$D^{\beta}u(y) = f(y, u), \quad 0 \le y \le 1,$$

$$u(0) - au'(0) = g_1(u),$$

$$u(1) + bu'(1) = g_2(u).$$

In a related direction, [7] examined the existence and uniqueness of solutions to fractional differential equations subject to nonlocal and fractional integral boundary conditions on the unit interval. Similarly, [6] established the necessary conditions for the existence of a unique solution to Caputo fractional delay integral boundary value problems defined on [0, 1].

Motivated by the aforementioned contributions, we propose a novel approach to establish the existence of solutions for a system of Caputo-type fractional differential equations. Specifically, we consider a class of complex dynamical systems that integrates fractional delay integro-differential equations with nonlocal boundary conditions of Riemann-Liouville (R-L) integral type, formulated over an arbitrary finite interval.

$${}^{C}D_{0+}^{q_{1}}v(x) = A(x)v(x) + f_{1}\left(x, v_{x}, \int_{0}^{x} f_{2}(x, s, v(s))ds\right), \quad x \in \mathcal{J} := [0, b],$$

$$v(0) = \varphi,$$

$$v'(0) = a_{1}I_{0+}^{q_{2}}v(\eta),$$

$$a_{2}v(b) + a_{3}v'(b) = f_{3}(v),$$

$$v(x) = f_{4}(x), \quad -\tau \le x \le 0.$$

$$(1.1)$$

Let ${}^CD^{q_1}_{0+}$ denote the Caputo fractional derivative of order $q_1 \in (2,3]$, and let $I^{q_2}_{0+}$ represent the Riemann–Liouville fractional integral of order $q_2 > 0$, defined for $x \in [0,b]$ and $\eta \in [0,1]$. Consider A(x) to be a bounded linear operator on a Banach space Y. We assume the nonlinear mappings

$$f_1: \mathcal{J} \times \mathbb{C}[-\tau, 0] \times Y \to Y, \quad f_2: \Delta \times Y \to Y, \quad f_3: \mathcal{C}[0, b] \to \mathbb{R},$$

are continuous, with the condition $f_3(0) = 0$, where $\Delta = \{(x, s) : 0 \le s \le x \le b\}$. Furthermore, let φ , a_1 , a_2 , $a_3 \in R$, and $f_4 \in \mathcal{C}[-\tau, 0]$ with $f_4(0) = 0$. If $v : [-\tau, b] \to Y$, then for every $x \in [0, b]$, we define the history segment

$$v_x(\theta) = v(x + \theta), \quad \theta \in [-\tau, 0].$$

For brevity, we introduce the operators

$$F_2v(x) = \int_0^x f_2(x, s, v(s)) ds, \quad F(x) = f_1(x, v_x, F_2v(x)).$$

One of the key advantages of the proposed system is its ability to model complex processes with memory and delay, such as heat transfer with aftereffects, viscoelastic behavior, and control systems. By establishing existence and uniqueness results for fractional delay integro-differential equations with integral boundary conditions, our work provides a rigorous mathematical foundation for the analysis of such systems. This not only guarantees mathematical consistency but also ensures the stability and predictability of solutions-an essential requirement for the design, control, and optimization of practical processes in science and engineering.

208 Page 4 of 23 M. Latha Maheswari et al.

The remainder of this paper is structured as follows. Section 2 reviews the fundamental concepts of Caputo fractional derivatives and Riemann-Liouville integrals, highlighting their essential properties and behavior under different conditions. Section 3 is devoted to the analytical techniques employed to establish the existence and uniqueness of solutions. In Section 4, illustrative examples, together with graphical interpretations, are presented to demonstrate and validate the effectiveness of the proposed framework.

2 Preliminaries and Notation

In this section, we recall some basic definitions and lemmas required for proving the main results.

Here Y denotes the Banach space, $\mathcal{C}(\mathcal{J},Y)$ represent the Banach space of continuous functions v(x) satisfying the condition $v(x) \in Y$ for $x \in \mathcal{J} = [0,b]$ and $\|v\|_{\mathcal{C}(\mathcal{J},Y)} = \max_{x \in \mathcal{J}} \|v(x)\|$. Let B(Y) denote the Banach space of bounded linear operators from Y into Y with the norm $\|A\|_{B(Y)} = \sup\{\|A(y)\|; \|y\| = 1\}$.

Definition 2.1 [11](Riemann-Liouville fractional integral) The Riemann-Liouville fractional integral $I_{0+}^{q_2}v$ of order $q_2>0, n-1< q_2< n, n\in\mathbb{N}$ of a function $v\in L^1(\mathcal{J})$ is defined by

$$I_{0+}^{q_2}v(s)[x] = I_{0+}^{q_2}v[x] := \frac{1}{\Gamma(q_1)} \int_{0}^{x} (x-s)^{q_1-1}v(s)ds,$$

where $\Gamma(q_1)$ is the Euler Gamma function.

Moreover, for $q_1 = 0$, we set $I_{0+}^{q_1} v := v$. For our convenience, let us take $I_{0+}^{q_1} v$ as $I^{q_1} v$.

Definition 2.2 [11](Caputo fractional derivative) The Caputo fractional derivative ${}^{C}D_{0+}^{q_1}v$ of order q_1 of a function $v \in AC^n(\mathcal{J})$ is defined by

$${}^{C}D_{0+}^{q_{1}}v(x) = \begin{cases} \frac{1}{\Gamma(m-q_{1})} \int_{0}^{x} \frac{v^{(m)}(s)ds}{(x-s)^{q_{1}-m+1}}, & \text{if } q_{1} \notin \mathbb{N}, \\ v^{(n)}(x), & \text{if } q_{1} \in \mathbb{N}, \end{cases}$$

where $v^{(m)}(x) = \frac{d^m v(x)}{dt^m}$, $q_1 > 0$ ($q_1 \notin \mathbb{N}$), $m = [q_1] + 1$ and $[q_1]$ is the smallest integer greater than or equal to q_1 . For our convenience, let us take ${}^CD_{0+}^{q_1}v$ as ${}^CD^{q_1}v$.

Lemma 2.1 [7] *Let* $p, q_1 > 0, m = [q_1] + 1$, then the following holds:

$${}^{C}D^{q_{1}}x^{p} = \begin{cases} \frac{\Gamma(p+1)}{\Gamma(p-q_{1}+1)}x^{p-q_{1}}, & (p \in \mathbb{N} \text{ and } p \geq m \text{ or } p \notin \mathbb{N} \text{ and } p > m-1), \\ 0, & p \in \{0, 1, \dots, m-1\}. \end{cases}$$

Lemma 2.2 [2, 7] Let p > q > 0, and $f, g \in L^1(\mathcal{J})$. Then the following holds:

- (i) $I^p I^q f(x) = I^{p+q} f(x)$.
- (ii) $I^p I^q f(x) = I^q I^p f(x)$.
- (iii) $I^{p}{f(x) + g(x)} = I^{p}f(x) + I^{p}g(x)$.
- (iv) $I^{p} C D^p f(x) = f(x) f(0), 0$
- (v) ${}^{C}D^{p}I^{p}f(x) = f(x)$.
- (vi) ${}^{C}D^{p} f(x) = I^{1-p}Df(x) = I^{1-p} f'(x), 0$
- (vii) ${}^{C}D^{p} {}^{C}D^{q} f(x) \neq {}^{C}D^{p+q} f(x)$.
- (viii) ${}^CD^{qC}D^p f(x) \neq {}^CD^{pC}D^q f(x)$.
 - (ix) ${}^{C}D^{p}I^{q} f(x) = I^{q-p} f(x).$

From the above observation, it is clear that the Riemann-Liouville and Caputo fractional differential operators do not possess the semigroup or commutative properties that are inherent to classical integer-order derivatives. For fundamental results and detailed discussions on fractional integrals and derivatives, the reader is referred to [11, 12, 16, 18].

Lemma 2.3 [7] *Let* $q_1 > 0$. *Then the following holds:*

$$I^{q_1}(^C D^{q_1}v(x)) = v(x) + \sum_{i=0}^{m-1} b_i x^i,$$

$$for some b_i \in \mathbb{R}, i = 0, 1, \dots, m-1, where m = [q_1] + 1.$$

Lemma 2.4 [7] Let $q_1 > 0$, $v \in L^1(\mathcal{J}, \mathbb{R})$ Then $\forall x \in \mathcal{J}$, the following holds:

$$|I^{q_1+1}v(x)| \le ||I^{q_1}v(x)||.$$

Lemma 2.5 [7] The fractional integral I^{q_1} , $q_1 > 0$ is bounded in $L^1(\mathcal{J}, \mathbb{R})$ with

$$||I^{q_1}v(x)|| \le \frac{||v||_L}{\Gamma(q_1+1)}.$$

Lemma 2.6 [7] (Burton and Kirk fixed-point theorem) Let A_1 , A_2 : $Y \rightarrow Y$ be two operators on a Banach space Y, such that A_1 is a contraction and A_2 is completely continuous. Then, either

- (a) the operator equation $v = A_1(v) + A_2(v)$ has a solution, or
- (b) the set $\Omega = \{v \in Y : \lambda A_1(\frac{v}{\lambda}) + \lambda A_2(v) = v\}$ is unbounded for $\lambda \in (0, 1)$ holds.

3 Main Results

In this section, we first present several preliminary lemmas and then establish the existence and uniqueness of solutions to the boundary value problem (BVP) (1.1) by employing fixed point theorems.

208 Page 6 of 23 M. Latha Maheswari et al.

Now, we assume the following conditions to prove the required results for the system of equations (1.1).

(H1)
$$L_1 = b(a_2b + 2a_3)(\frac{a_1\eta^{q_2+1}}{\Gamma(q_2+2)} - 1) - (a_2b + a_3)\frac{2a_1\eta^{q_2+2}}{\Gamma(q_2+3)} \neq 0, a_2b \neq -2a_3, a_2 \neq 0.$$

(H2) There exists $l \in L^1(\mathcal{J}, \mathbb{R}_+)$ such that

$$||f_1(x, u_1, v_1) - f_1(x, u_2, v_2)||_Y \le l(x) \Big(||u_1 - u_2||_{\infty} + ||v_1 - v_2|| \Big),$$

where $v_1, v_2 \in Y, u_1, u_2 \in C_x = C[-x, 0], x \in \mathcal{J}$.

(H3) Let L_2 be a positive constant such that

$$||f_2(x, s, u) - f_2(x, s, v)||_Y \le L_2 ||u - v||_Y$$
, where $u, v \in Y$.

(H4) There exists a positive constant L_3 such that

$$||f_3(u) - f_3(v)|| \le L_3 ||u - v||_{\mathcal{J}}$$
, where $u, v \in \mathcal{C}(\mathcal{J})$.

(H5) $A: \mathcal{J} \to B(Y)$ is a continuous bounded linear operator and there exists a constant $L_4 > 0$ such that

$$||A(x)||_{B(Y)} \le L_4.$$

(H6) There exists a non-negative function $\bar{p} \in L^1(\mathcal{J}, \mathbb{R}_+)$ such that

$$||f_1(x, u, v)||_Y \le \bar{p}(x) \left(1 + ||u||_{\infty} + ||v||\right), \text{ where } (x, u, v) \in \mathcal{J} \times \mathcal{C}_x \times Y.$$

For our convenience, let us assume

$$\begin{cases} m_1 = \frac{a_1(a_2b + 2a_3)b}{L_1}, & m_2 = -\frac{2a_2}{L_1} \left(\frac{a_1\eta^{q_2+2}}{\Gamma(q_2+3)}\right), & m_3 = \frac{m_2a_3}{a_2}, \\ m_4 = -\frac{m_2}{a_2}, & m_5 = m_2 - m_1 \left(\frac{\eta^{q_2}}{\Gamma(q_2+1)}\right), & m_6 = \frac{a_1(a_2b + a_3)}{L_1}, \\ m_7 = \frac{m_2(a_2b + a_3) - a_2}{b(a_2b + 2a_3)}, & m_8 = \frac{m_3(a_2b + a_3) - a_3}{b(a_2b + 2a_3)}, & m_9 = \frac{-m_4(a_2b + a_3) - 1}{b(a_2b + 2a_3)}, \\ m_{10} = m_9b - \frac{a_1(a_2b + a_3)\eta^{q_2}}{L_1\Gamma(q_2+1)}. \end{cases}$$

$$(3.1)$$

Lemma 3.1 Consider the following system for $y \in C(\mathcal{J}, Y)$, $q_1 \in (2, 3]$,

$$^{C}D^{q_{1}}v(x) = y(x),$$
 (3.2)

with the boundary conditions

$$v(0) = \varphi, \ v'(0) = a_1 I^{q_2} v(\eta), \ a_2 v(b) + a_3 v'(b) = f_3(v), \ (3.3)$$

then the unique solution of the system is given by

$$v(x) = I^{q_1}y(x) + (m_6x^2 - m_1x)I^{q_2+q_1}y(\eta) + (m_7x^2 - m_2x)I^{q_1}y(b) + (m_8x^2 - m_3x)I^{q_1-1}y(b) + (m_9x^2 - m_4x)f_3(v) + (m_{10}x^2 - m_5x - 1)\varphi.$$

Proof Applying I^{q_1} to both sides of ${}^CD^{q_1}v(x)=y(x)$, we obtain

$$I^{q_1}(^C D^{q_1} v(x)) = I^{q_1} y(x).$$

$$v(x) = I^{q_1} y(x) - b_0 - b_1 x - b_2 x^2, \ b_0, b_1, b_2 \in \mathbb{R}.$$

From $v(0) = \varphi$, we know that $-b_0 = \varphi$. Hence we obtain,

$$v(x) = I^{q_1} y(x) + \varphi - b_1 x - b_2 x^2. \tag{3.4}$$

Also from $v'(0) = a_1 I^{q_2} v(\eta)$, we have

$$\left(\frac{a_1\eta^{q_2+1}}{\Gamma(q_2+2)} - 1\right)b_1 + 2\frac{a_1\eta^{q_2+2}}{\Gamma(q_2+3)}b_2 = a_1I^{q_2+q_1}y(\eta) - a_1\frac{\eta^{q_2}}{\Gamma(q_2+1)}\varphi.$$

Then by $a_2v(b) + a_3v'(b) = f_3(v)$, we get

$$(a_2b + a_3)b_1 + (a_2b + 2a_3)bb_2 = a_2I^{q_1}y(b) + a_3I^{q_1-1}y(b) - f_3(v) + a_2\varphi.$$

Hence,

$$\begin{split} b_2 &= \frac{-a_1(a_2b + a_3)}{L_1} I^{q_2 + q_1} y(\eta) \\ &+ \left(\frac{a_2}{b(a_2b + 2a_3)} + \frac{2a_1a_2(a_2b + a_3)\eta^{q_2 + 2}}{L_1b(a_2b + 2a_3)\Gamma(q_2 + 3)} \right) I^{q_2} y(b) \\ &+ \left\{ \frac{a_1(a_2b + a_3)\eta^{q_2}}{L_1\Gamma(q_2 + 1)} - \left(\frac{a_2}{b(a_2b + 2a_3)} + \frac{2a_1a_2(a_2b + a_3)\eta^{q_2 + 2}}{L_1b(a_2b + 2a_3)\Gamma(q_2 + 3)} \right) \right\} \varphi \\ &+ \left(\frac{a_3}{b(a_2b + 2a_3)} + \frac{2a_1a_3(a_2b + a_3)\eta^{q_2 + 2}}{L_1b(a_2b + 2a_3)\Gamma(q_2 + 3)} \right) I^{q_2 - 1} y(b) \\ &- \left(\frac{1}{b(a_2b + 2a_3)} + \frac{2a_1(a_2b + a_3)\eta^{q_2 + 2}}{L_1b(a_2b + 2a_3)\Gamma(q_2 + 3)} \right) f_3(v) \\ &= -m_6 I^{q_2 + q_1} y(\eta) - m_{10}\varphi - m_7 I^{q_2} y(b) - m_8 I^{q_2 - 1} y(b) - m_9 f_3(v). \\ b_1 &= \frac{a_1(a_2b + 2a_3)b}{L_1} I^{q_2 + q_1} y(\eta) - \frac{2a_2}{L_1} \left(\frac{a_1\eta^{q_2 + 2}}{\Gamma(q_2 + 3)} \right) I^{q_1} y(b) \\ &- \frac{2a_3}{L_1} \left(\frac{a_1\eta^{q_2 + 2}}{\Gamma(q_2 + 3)} \right) I^{q_1 - 1} y(b) \\ &+ \frac{2}{L_1} \left(\frac{a_1\eta^{q_2 + 2}}{\Gamma(q_2 + 3)} \right) f_3(v) - \left\{ \frac{2a_2}{L_1} \left(\frac{a_1\eta^{q_2 + 2}}{\Gamma(q_2 + 3)} \right) - \frac{(a_2b + 2a_3)b}{L_1} \left(\frac{a_1\eta^{q_2}}{\Gamma(q_2 + 1)} \right) \right\} \varphi \end{split}$$

208 Page 8 of 23 M. Latha Maheswari et al.

$$= m_1 I^{q_2+q_1} y(\eta) + m_2 I^{q_1} y(b) + m_3 I^{q_1-1} y(b) + m_4 f_3(v) + m_5 \varphi.$$

Substituting in equation (3.4),

$$v(x) = I^{q_1} y(x) + (m_6 x^2 - m_1 x) I^{q_2 + q_1} y(\eta) + (m_7 x^2 - m_2 x) I^{q_1} y(b)$$

$$+ (m_8 x^2 - m_3 x) I^{q_1 - 1} y(b)$$

$$+ (m_9 x^2 - m_4 x) f_3(v) + (m_{10} x^2 - m_5 x - 1) \varphi.$$

According to Lemma 3.1, v solves BVP (1.1) if and only if it satisfies

$$v(x) = \begin{cases} I^{q_1}A(s)v(s)[x] + I^{q_1}F(s)[x] \\ + (m_6x^2 - m_1x)[I^{q_2+q_1}A(s)v(s)[\eta] + I^{q_2+q_1}F(s)[\eta]] \\ + (m_7x^2 - m_2x)[I^{q_1}A(s)v(s)[b] + I^{q_1}F(s)[b]] \\ + (m_8x^2 - m_3x)[I^{q_1-1}A(s)v(s)[b] + I^{q_1-1}F(s)[b]] \\ + (m_9x^2 - m_4x)f_3(v) + (m_{10}x^2 - m_5x - 1)\varphi, & \text{if } x \in \mathcal{J}, \\ f_4(x), & \text{if } x \in [-\tau, 0]. \end{cases}$$

Define an integral operator $T: Y \to Y$ by

$$(Tv)(x) = \begin{cases} I^{q_1}A(s)v(s)[x] + I^{q_1}F(s)[x] \\ +(m_6x^2 - m_1x)[I^{q_2+q_1}A(s)v(s)[\eta] + I^{q_2+q_1}F(s)[\eta]] \\ +(m_7x^2 - m_2x)[I^{q_1}A(s)v(s)[b] + I^{q_1}F(s)[b]] \\ +(m_8x^2 - m_3x)[I^{q_1-1}A(s)v(s)[b] + I^{q_1-1}F(s)[b]] \\ +(m_9x^2 - m_4x)f_3(v) + (m_{10}x^2 - m_5x - 1)\varphi, & \text{if } x \in \mathcal{J}, \\ f_4(x), & \text{if } x \in [-\tau, 0]. \end{cases}$$

$$(3.5)$$

Define the operators T_1 , T_2 :

$$(T_1v)(x) = \begin{cases} I^{q_1}A(s)v(s)[x] + I^{q_1}F(s)[x] \\ + (m_6x^2 - m_1x)[I^{q_2+q_1}A(s)v(s)[\eta] + I^{q_2+q_1}F(s)[\eta]] \\ + (m_7x^2 - m_2x)[I^{q_1}A(s)v(s)[b] + I^{q_1}F(s)[b]] \\ + (m_8x^2 - m_3x)[I^{q_1-1}A(s)v(s)[b] + I^{q_1-1}F(s)[b]], & \text{if } x \in \mathcal{J}, \\ f_4(x), & \text{if } x \in [-\tau, 0], \end{cases}$$

$$(T_2v)(x) = \begin{cases} (m_9x^2 - m_4x)f_3(v) + (m_{10}x^2 - m_5x - 1)\varphi, & \text{if } x \in \mathcal{J}, \\ 0, & \text{if } x \in [-\tau, 0]. \end{cases}$$

It is obvious that $Tv = T_1v + T_2v$.

Lemma 3.2 Suppose A(x) be a linear operator on Y which is bounded, $f_1 \in C(\mathcal{J} \times \mathbb{C}[-\tau, 0] \times Y, Y)$. Then $v \in Y$ solves BVP (1.1) if and only if Tv = v.

Proof Consider v as a solution of BVP (1.1), satisfying all the equations in (1.1). From Lemma 3.1, we deduce that

$$\begin{split} v(x) &= I^{q_1} A(s) v(s)[x] + I^{q_1} F(s)[x] + (m_6 x^2 - m_1 x) [I^{q_2 + q_1} A(s) v(s)[\eta] \\ &+ I^{q_2 + q_1} F(s)[\eta]] \\ &+ (m_7 x^2 - m_2 x) [I^{q_1} A(s) v(s)[b] + I^{q_1} F(s)[b]] \\ &+ (m_8 x^2 - m_3 x) [I^{q_1 - 1} A(s) v(s)[b] \\ &+ I^{q_1 - 1} F(s)[b]] + (m_9 x^2 - m_4 x) f_3(v) + (m_{10} x^2 - m_5 x - 1) \varphi = T v(x). \end{split}$$

Conversely, v satisfies

$$\begin{split} v(x) &= Tv(x) \\ &= I^{q_1}A(s)v(s)[x] + I^{q_1}F(s)[x] + (m_6x^2 - m_1x)[I^{q_2+q_1}A(s)v(s)[\eta] \\ &+ I^{q_2+q_1}F(s)[\eta]] \\ &+ (m_7x^2 - m_2x)[I^{q_1}A(s)v(s)[b] + I^{q_1}F(s)[b]] \\ &+ (m_8x^2 - m_3x)[I^{q_1-1}A(s)v(s)[b] \\ &+ I^{q_1-1}F(s)[b]] + (m_9x^2 - m_4x)f_3(v) + (m_{10}x^2 - m_5x - 1)\varphi. \\ v(x) &= I^{q_1} \bigg[A(s)v(s) + F(s) \bigg] [x] + (m_6x^2 - m_1x)I^{q_2+q_1} \bigg[A(s)v(s) + F(s) \bigg] [\eta] \\ &+ (m_7x^2 - m_2x)I^{q_1} \bigg[A(s)v(s) + F(s) \bigg] [b] \\ &+ (m_8x^2 - m_3x)I^{q_1-1} \bigg[A(s)v(s) + F(s) \bigg] [b] \\ &+ (m_9x^2 - m_4x)f_3(v) + (m_{10}x^2 - m_5x - 1)\varphi. \end{split}$$

and denote y(s)[x] = [A(s)v(s) + F(s)][x]. Accordingly, the preceding equation may be expressed in the form,

$$v(x) = I^{q_1}y(s)[x] + (m_6x^2 - m_1x)I^{q_1+q_2}y(s)[\eta] + (m_7x^2 - m_2x)I^{q_1}y(s)[b] + (m_8x^2 - m_3x)I^{q_1-1}y(s)[b] + (m_9x^2 - m_4x)f_3(v) + (m_{10}x^2 - m_5x - 1)\varphi.$$

According to Lemma 3.1, it is clear that v(x) satisfies (3.2) and (3.3). Hence, v(x) satisfies

$$^{C}D^{q_{1}}v(x) = y(s)[x] = A(s)v(s)[x] + F(s)[x], \quad x \in \mathcal{J},$$

 $v(0) = \varphi,$
 $v'(0) = a_{1}I^{q_{2}}v(\eta),$
 $a_{2}u(b) + a_{3}u'(b) = f_{3}(v),$
 $v(x) = f_{4}(x), \quad x \in [-\tau, 0].$

208 Page 10 of 23 M. Latha Maheswari et al.

Hence, v satisfies the given BVP (1.1).

Therefore, v is a solution of BVP (1.1) if and only if Tv = v.

Before presenting the main results, we establish some notations that will be used throughout the work.

$$Q_{0} = \left(L_{4} + (1 + L_{2})||l||\right),$$

$$Q_{1} = \frac{1 + |m_{7}|b^{2} + |m_{2}|b}{\Gamma(q_{1})}b + \frac{|m_{6}|b^{2} + |m_{1}|b}{\Gamma(q_{1} + q_{2})} + \frac{|m_{8}|b^{2} + |m_{3}|b}{\Gamma(q_{1} - 1)}b,$$

$$Q_{2} = (|m_{9}|b^{2} + |m_{4}|b),$$

$$Q_{3} = (|m_{10}|b^{2} + |m_{5}|b + 1)|f_{4}|.$$

We proceed to state our main results. A uniqueness result is obtained by applying the Banach contraction principle.

Theorem 3.1 Suppose that (H1) - (H5) are satisfied. If

$$Z_u = Q_0 Q_1 + Q_2 L_3 < 1,$$

then the BVP (1.1) possesses a unique solution on the interval $[-\tau, b]$.

Proof Let $u, v \in Y$ and T be the operator defined in (3.5). Then for each $x \in \mathcal{J}$, we have

$$\begin{split} \|(Tu)(x) - (Tv)(x)\| &\leq I^{q_1} \| \big[A(s)u(s) - A(s)v(s) \big] [x] \| \\ &+ I^{q_1} \| \big[f_1 \big(s, u_s, F_2u(s) \big) - f_1 \big(s, v_s, F_2v(s) \big) \big] [x] \| \\ &+ \| m_6 x^2 - m_1 x \| \Big\{ I^{q_2 + q_1} \| \big[A(s)u(s) - A(s)v(s) \big] [\eta] \| \\ &+ I^{q_2 + q_1} \| \big[f_1 \big(s, u_s, F_2u(s) \big) - f_1 \big(s, v_s, F_2v(s) \big) \big] [\eta] \| \Big\} \\ &+ \| m_7 x^2 - m_2 x \| \Big\{ I^{q_1} \| \big[A(s)u(s) - A(s)v(s) \big] [b] \| \\ &+ I^{q_1} \| \big[f_1 \big(s, u_s, F_2u(s) \big) - f_1 \big(s, v_s, F_2v(s) \big) \big] [b] \| \Big\} \\ &+ \| m_8 x^2 - m_3 x \| \Big\{ I^{q_1 - 1} \| \big[A(s)u(s) - A(s)v(s) \big] [b] \| \\ &+ I^{q_1 - 1} \| \big[f_1 \big(s, u_s, F_2u(s) \big) - f_1 \big(s, v_s, F_2v(s) \big) \big] [b] \| \Big\} \\ &+ \| m_9 x^2 - m_4 x \| \Big\{ \| f_3(u) - f_3(v) \| \Big\}. \end{split}$$

It can be seen from (H2) that,

$$||f_1(x, u_1, v_1) - f_1(x, u_2, v_2)||_Y \le l(x) \bigg(||u_1 - u_2||_{\infty} + ||v_1 - v_2|| \bigg).$$

Hence,

$$||f_1(s, u_s, F_2u(s)) - f_1(s, v_s, F_2v(s))||_Y \le l(x) \Big(||u_s - v_s|| + ||F_2u(s) - F_2v(s)|| \Big).$$

It can be seen from (H3) that,

$$||f_2(x, s, u) - f_2(x, s, v)||_Y \le L_2 ||u - v||_Y.$$

On substituting, we get

$$||f_1(s, u_s, F_2u(s)) - f_1(s, v_s, F_2v(s))|| \le l(x) \Big(||u_s - v_s||_{\infty} + L_2||u - v||_Y \Big).$$

$$\le l(x)(1 + L_2)||u - v||.$$

Similarly, $||A(s)u(s)[x] - A(s)v(s)[x]|| \le ||A(s)|| ||u - v||[x]|$. Since A(x) is a bounded linear operator and from hypothesis (H5) we have, $||A(s)|| \le L_4$. Hence $||A(s)u(s)[x] - A(s)v(s)[x]|| \le L_4||u - v||[x]|$. Similarly from (H4),

$$||f_3(u) - f_3(v)|| \le L_3 ||u - v||.$$

Applying the above, we get

$$\begin{split} &\|(Tu)(x)-(Tv)(x)\|\leq I^{q_1}\Big(L_4\|u-v\|\Big)[x]+I^{q_1}\Big(l(s)(1+L_2)\|u-v\|\Big)[x]\\ &+\|m_6x^2-m_1x\|\Big\{I^{q_2+q_1}\Big(L_4\|u-v\|\Big)[\eta]+I^{q_2+q_1}\Big(l(s)(1+L_2)\|u-v\|\Big)[\eta]\Big\}\\ &+\|m_7x^2-m_2x\|\Big\{I^{q_1}\Big(L_4\|u-v\|\Big)[b]+I^{q_1}\Big(l(s)(1+L_2)\|u-v\|\Big)[b]\Big\}\\ &+\|m_8x^2-m_3x\|\Big\{I^{q_1-1}\Big(L_4\|u-v\|\Big)[b]+I^{q_1-1}\Big(l(s)(1+L_2)\|u-v\|\Big)[b]\Big\}\\ &+\|m_9x^2-m_4x\|\Big\{L_3\|u-v\|\Big\}\\ &\leq \Big\{L_4I^{q_1}[x]+(1+L_2)I^{q_1}(l(s))[x]\\ &+\|m_6x^2-m_1x\|\Big(L_4I^{q_2+q_1}[\eta]+(1+L_2)I^{q_2+q_1}(l(s))[\eta]\Big)\\ &+\|m_7x^2-m_2x\|\Big(L_4I^{q_1}[b]+(1+L_2)I^{q_1}(l(s))[b]\Big)\\ &+\|m_8x^2-m_3x\|\Big(L_4I^{q_1-1}[b]+(1+L_2)I^{q_1-1}(l(s))[b]\Big)\Big\}\|u-v\|\\ &+\|m_9x^2-m_4x\|\Big(L_3\|u-v\|\Big)\\ &\leq \Big\{L_4I^{q_1}[x]+(1+L_2)I^{q_1}(l(s))[x]+(|m_6|b^2+|m_1|b)\\ &\Big(L_4I^{q_2+q_1}[\eta]+(1+L_2)I^{q_2+q_1}(l(s))[\eta]\Big)\\ &+(|m_7|b^2+|m_2|b)\Big(L_4I^{q_1}[b]+(1+L_2)I^{q_1}(l(s))[b]\Big)\Big\}\|u-v\|\\ &+(|m_8|b^2+|m_3|b)\Big(L_4I^{q_1-1}[b]+(1+L_2)I^{q_1-1}(l(s))[b]\Big)\Big\}\|u-v\|\\ &+(|m_9|b^2+|m_4|b)(L_3\|u-v\|) \end{split}$$

208 Page 12 of 23 M. Latha Maheswari et al.

$$\leq \left\{ (L_4 + (1 + L_2) || l ||) \left[\frac{b}{\Gamma(q_1)} + \frac{|m_6|b^2 + |m_1|b}{\Gamma(q_2 + q_1)} \right. \right.$$

$$+ \frac{|m_7|b^3 + |m_2|b^2}{\Gamma(q_1)} + \frac{|m_8|b^3 + |m_3|b^2}{\Gamma(q_1 - 1)} \right]$$

$$+ (|m_9|b^2 + |m_4|b)L_3 \right\} ||u - v||$$

$$\leq \left\{ Q_0 Q_1 + Q_2 L_3 \right\} ||u - v||.$$

For every $x \in [-\tau, 0]$, we have ||(Tu)(x) - (Tv)(x)|| = 0. Hence for every $x \in [-\tau, b]$, we have

$$||(Tu)(x) - (Tv)(x)|| \le \left\{ Q_0 Q_1 + Q_2 L_3 \right\} ||u - v||.$$

Owing to $Q_0Q_1 + Q_2L_3 < 1$, it follows that T is a contraction mapping. Consequently, the Banach contraction principle ensures that BVP (1.1) has a unique solution. This concludes the proof.

We now present some existence results, derived using the Burton and Kirk fixed-point theorem.

Theorem 3.2 Assume that (H1) - (H6) holds. If

$$Z_e = Q_1(L_4 + ||p||(1 + L_2)) + Q_2L_3 < 1$$
(3.6)

then BVP(1.1) possesses at least one solution on the interval $[-\tau, b]$.

Proof Let $T: Y \to Y$ be defined according to (3.5).

Step 1: To prove that $T_1: Y \to Y$ is continuous. Let $u, v \in Y$. When $u \to v$, namely $||u - v|| \to 0$, we have

$$\begin{split} \sup_{x \in \mathcal{J}} I^{q_1} | f_1(s, u_s, F_2 u(s)) - f_1(s, v_s, F_2 v(s)) | [x] &\to 0, \\ \sup_{x \in \mathcal{J}} I^{q_1 + q_2} | f_1(s, u_s, F_2 u(s)) - f_1(s, v_s, F_2 v(s)) | [\eta] &\to 0, \\ \sup_{x \in \mathcal{J}} I^{q_1} | f_1(s, u_s, F_2 u(s)) - f_1(s, v_s, F_2 v(s)) | [b] &\to 0, \\ \sup_{x \in \mathcal{J}} I^{q_1 - 1} | f_1(s, u_s, F_2 u(s)) - f_1(s, v_s, F_2 v(s)) | [b] &\to 0. \end{split}$$

Also,

$$|T_1u(x) - T_1v(x)| \le I^{q_1}|A(s)u(s) - A(s)v(s)|[x] + I^{q_1}|f_1(s, u_s, F_2u(s)) - f_1(s, v_s, F_2v(s))|[x] + |m_6x^2 - m_1x|\Big(I^{q_1+x}|A(s)u(s) - A(s)v(s)|[\eta]$$

$$\begin{split} &+I^{q_1+q_2}|f_1(s,u_s,F_2u(s))-f_1(s,v_s,F_2v(s))|[\eta]\Big)\\ &+|m_7x^2-m_2x|\Big(I^{q_1}|A(s)u(s)-A(s)v(s)|[b]\\ &+I^{q_1}|f_1(s,u_s,F_2u(s))-f_1(s,v_s,F_2v(s))|[b]\Big)\\ &+|m_8x^2-m_3x|\Big(I^{q_1-1}|A(s)u(s)-A(s)v(s)|[b]\\ &+I^{q_1-1}|f_1(s,u_s,F_2u(s))-f_1(s,v_s,F_2v(s))|[b]. \end{split}$$

Then,

208 Page 14 of 23 M. Latha Maheswari et al.

From the above inequality, when $u \to v$, $||T_1u(x) - T_1v(x)|| \to 0$, implies the operator T_1 is continuous.

Step 2: Define $B_r = \{v \in Y : \|v\|_Y \le r, r > 0\}$. Let there exist nonzero real constant P_1 such that $P_1 = \max_{(x,s)\in\Delta} \|f_2(x,s,0)\|$. We will prove $T_1(B_r)$ is bounded and equicontinuous. For every $v \in B_r$ and for every $x \in \mathcal{J}$, we have

$$\begin{aligned} |(T_{1}v)(x)| &\leq |I^{q_{1}}A(s)v(s)[x]| + |I^{q_{1}}F(s)[x]| \\ &+ |(m_{6}x^{2} - m_{1}x)| \Big[|I^{q_{2}+q_{1}}A(s)v(s)[\eta]| + |I^{q_{2}+q_{1}}F(s)[\eta]| \Big] \\ &+ |(m_{7}x^{2} - m_{2}x)| \Big[|I^{q_{1}}A(s)v(s)[b]| + |I^{q_{1}}F(s)[b]| \Big] \\ &+ |(m_{8}x^{2} - m_{3}x)| \Big[|I^{q_{1}-1}A(s)v(s)[b]| + |I^{q_{1}-1}F_{1}(s)[b]| \Big]. \end{aligned}$$

By (H3), (H5) and (H6), we get

$$\begin{split} |(T_{1}u)(x)| &\leq L_{4}\|v\||I^{q_{1}}[x]| + |I^{q_{1}}\bar{p}(s)[x](1 + \|v\| + \|F_{2}v(s)\|)| \\ &+ |(m_{6}x^{2} - m_{1}x)|[L_{4}\|v\||I^{q_{2}+q_{1}}[\eta]| \\ &+ |I^{q_{2}+q_{1}}\bar{p}(s)[\eta](1 + \|v\| + \|F_{2}v(s)\|)|] \\ &+ |(m_{7}x^{2} - m_{2}x)|[L_{4}\|v\||I^{q_{1}}[b]| + |I^{q_{1}}\bar{p}(s)[b](1 + \|v\| + \|F_{2}v(s)\|)|] \\ &+ |(m_{8}x^{2} - m_{3}x)|[L_{4}\|v\||I^{q_{1}-1}[b]| \\ &+ |I^{q_{1}-1}\bar{p}(s)[b](1 + \|v\| + \|F_{2}v(s)\|)|]. \end{split}$$

From (H2), Lemma 2.4 and Lemma 2.5, we obtain

$$\begin{split} |(T_1u)(x)| &\leq L_4\|v\||I^{q_1}[x]| + (1+\|v\|(1+L_2)+P_1)|I^{q_1}\bar{p}(s)[x]| \\ &+ |(m_6x^2-m_1x)|\big[L_4\|v\||I^{q_2+q_1}[x]|[\eta]| \\ &+ (1+\|v\|(1+L_2)+P_1)|I^{q_2+q_1}\bar{p}(s)[\eta]|\big] \\ &+ |(m_7x^2-m_2x)|\big[\|v\||I^{q_1}[b]| + (1+\|v\|(1+L_2)+P_1)|I^{q_1}\bar{p}(s)[b]|\big] \\ &+ |(m_8x^2-m_3x)|\big[\|v\||I^{q_1-1}[b]| \\ &+ (1+\|v\|(1+L_2)+P_1)|I^{q_1-1}\bar{p}(s)[b]|\big] \\ &\leq L_4r|I^{q_1}[x]| + (1+r(1+L_2)+P_1)|I^{q_1}\bar{p}(s)[x]| \\ &+ (|m_6|b^2+|m_1|b)\big[L_4r|I^{q_2+q_1}[x]|[\eta]| \\ &+ (1+r(1+L_2)+P_1)|I^{q_2+q_1}\bar{p}(s)[\eta]|\big] \\ &+ (|m_7|b^2+|m_2|b)\big[L_4r|I^{q_1}[b]| + (1+r(1+L_2)+P_1)|I^{q_1}\bar{p}(s)[b]|\big] \\ &+ (|m_8|b^2+|m_3|b)\big[L_4r|I^{q_1-1}[b]| \\ &+ (1+r(1+L_2)+P_1)|I^{q_1-1}\bar{p}(s)[b]|\big] \\ &|(T_1u)(x)| \leq L_4rQ_1+\Big(1+r(1+L_2)+P_1\Big)\|\bar{p}\|Q_1. \\ &\|(T_1u)(x)\| \leq \sup_{x\in\mathcal{J}} |(T_1u)(x)| \leq Q_1\Big(L_4r+\Big(1+r(1+L_2)+P_1\Big)\|\bar{p}\|\Big). \end{split}$$

Hence $T_1(B_r)$ is bounded.

Now, we will prove that $T_1(B_r)$ is equicontinuous.

Let,

$$\widetilde{M} = \sup_{x \in \mathcal{T}} \{ |f_1(x, v, u)| : ||v|| \le r, ||u|| \le L_2 r + P_1 \}.$$

Let $x_1, x_2 \in [-\tau, b]$ with $x_1 < x_2, v \in B_r$,

Case (i): If $0 \le x_1 < x_2 \le b$, then

$$\begin{split} &|(T_1v)(x_2)-(T_1v)(x_1)| \leq \frac{1}{\Gamma(q_1)} \int\limits_0^{x_2} (x_2-s)^{q_1-1} |A(s)v(s)| ds \\ &-\frac{1}{\Gamma(q_1)} \int\limits_0^{x_1} (x_1-s)^{q_1-1} |A(s)v(s)| ds \\ &+\frac{1}{\Gamma(q_1)} \int\limits_0^{x_2} (x_2-s)^{q_1-1} |f_1(s,v_s,F_2v(s))| ds \\ &-\frac{1}{\Gamma(q_1)} \int\limits_0^{x_1} (x_1-s)^{q_1-1} |f_1(s,v_s,F_2v(s))| ds \\ &+\left[|m_6|(x_2^2-x_1^2)+|m_1|(x_2-x_1)\right] \Big(I^{q_1+q_2} |A(s)v(s)|[\eta]+I^{q_1+q_2}|F(s)|[\eta]\Big) \\ &+\left[|m_7|(x_2^2-x_1^2)+|m_2|(x_2-x_1)\right] \Big(I^{q_1}|A(s)v(s)|[b]+I^{q_1}|F(s)|[b]\Big) \\ &+\left[|m_8|(x_2^2-x_1^2)+|m_3|(x_2-x_1)\right] \Big(I^{q_1-1}|A(s)v(s)|[b]+I^{q_1-1}|F(s)|[b]\Big) \\ &\leq \frac{1}{\Gamma(q_1)} \int\limits_0^{x_1} \Big((x_2-s)^{q_1-1}-(x_1-s)^{q_1-1}\Big) |A(s)v(s)| ds \\ &+\frac{1}{\Gamma(q_1)} \int\limits_{x_1}^{x_2} (x_2-s)^{q_1-1} |A(s)v(s)| ds \\ &+\frac{1}{\Gamma(q_1)} \int\limits_{x_1}^{x_2} (x_2-s)^{q_1-1} |f_1(s,v_s,F_2v(s))| ds \\ &+\frac{1}{\Gamma(q_1)} \int\limits_{x_1}^{x_2} (x_2-s)^{q_1-1} |f_1(s,v_s,F_2v(s))| ds \\ &+(x_2-x_1) \Big\{ \Big[2b|m_6|+|m_1|\Big] \Big(I^{q_1+q_2}|A(s)v(s)|[\eta]+I^{q_1+q_2}|F(s)|[\eta]\Big) \\ &+\Big[2b|m_7|+|m_2|\Big] \Big(I^{q_1}|A(s)v(s)|[b]+I^{q_1}|F(s)|[b]\Big) \end{split}$$

208 Page 16 of 23 M. Latha Maheswari et al.

$$+ \left[2b|m_{8}| + |m_{3}| \right] \left(I^{q_{1}-1}|A(s)v(s)|[b] + I^{q_{1}-1}|F(s)|[b] \right)$$

$$\leq (x_{2} - x_{1})2(L_{4}r + \widetilde{M}) \left[\frac{1}{\Gamma(q_{1})} b^{q_{1}} + \frac{2b|m_{6}| + |m_{1}|}{\Gamma(q_{1} + q_{2})} \eta^{q_{1}+q_{2}} \right.$$

$$+ \frac{2b|m_{7}| + |m_{2}|}{\Gamma(q_{1})} b^{q_{1}} + \frac{2b|m_{8}| + |m_{3}|}{\Gamma(q_{1} - 1)} b^{q_{1}-1} \right].$$

Case (ii): If $-\tau < x_1 < 0 < x_2 < b$, then

$$\begin{split} &|(T_{1}v)(x_{2})-(T_{1}v)(x_{1})|\leq |(T_{1}v)(x_{2})-(T_{1}v)(0)|+|(T_{1}v)(0)-(T_{1}v)(x_{1})|\\ &\leq \frac{1}{\Gamma(q_{1})}\int_{0}^{x_{2}}(x_{2}-s)^{q_{1}-1}|A(s)v(s)|ds\\ &+\frac{1}{\Gamma(q_{1})}\int_{0}^{x_{2}}(x_{2}-s)^{q_{1}-1}|f_{1}\big(s,v_{s},F_{2}v(s)\big)|ds\\ &+\left[|m_{6}|x_{2}^{2}+|m_{1}|x_{2}\right]\Big(I^{q_{1}+q_{2}}|A(s)v(s)|[\eta]+I^{q_{1}+q_{2}}|f_{1}\big(s,v_{s},F_{2}v(s)\big)|[\eta]\Big)\\ &+\left[|m_{7}|x_{2}^{2}+|m_{2}|x_{2}\right]\Big(I^{q_{1}}|A(s)v(s)|[b]+I^{q_{1}}|f_{1}\big(s,v_{s},F_{2}v(s)\big)|[b]\Big)\\ &+\left[|m_{8}|x_{2}^{2}+|m_{3}|x_{2}\right]\Big(I^{q_{1}-1}|A(s)v(s)|[b]+I^{q_{1}-1}|f_{1}\big(s,v_{s},F_{2}v(s)\big)|[b]\Big)\\ &+|f_{4}(x_{1})|\\ &\leq (L_{4}r+\widetilde{M})x_{2}\bigg[\frac{1}{\Gamma(q_{1})}b^{q_{1}}+\frac{b|m_{6}|+|m_{1}|}{\Gamma(q_{1}+q_{2})}\eta^{q_{1}+q_{2}}+\frac{b|m_{7}|+|m_{2}|}{\Gamma(q_{1})}b^{q_{1}}\\ &+\frac{b|m_{8}|+|m_{3}|}{\Gamma(q_{1}-1)}b^{q_{1}-1}\bigg]+|f_{4}(x_{1})|. \end{split}$$

Case (iii): If $-\tau \le x_1 < x_2 \le 0$, it can be seen from the definition of f_4 that

$$|(T_1v)(x_2) - (T_1v)(x_1)| = |f_4(x_2) - f_4(x_1)|.$$

From Case (i) - Case (iii), it follows that $T_1(B_r)$ is equicontinuous.

Step 3: We now show that T_2 is contraction. Consider $u, v \in Y$. From (H4), we have

$$|(T_{2}u)(x) - (T_{2}v)(x)| \le |(m_{9}x^{2} - m_{4}x)(f_{3}(u) - f_{3}(v))|$$

$$\le \left(|m_{9}|b^{2} + |m_{4}|b\right)|f_{3}(u) - f_{3}(v)|$$

$$\le Q_{2}L_{3}||u - v|| \quad \forall x \in \mathcal{J}.$$

$$||(T_{2}u)(x) - (T_{2}v)(x)|| \le \sup_{x \in \mathcal{J}} |(T_{2}u)(x) - (T_{2}v)(x)|$$

$$< Q_2L_3||u-v||_Y < ||u-v||.$$

Hence T_2 is contraction.

Step 4: Let $\Omega = \{v \in Y : \lambda T_2(\frac{v}{\lambda}) + \lambda T_1(v) = v, \lambda \in (0, 1)\}$. For every $v \in \Omega$, there exists $\lambda \in (0, 1)$, such that

$$\begin{split} v(x) &= \lambda \bigg[I^{q_1} A(s) v(s)[x] + I^{q_1} F(s)[x] + (m_6 x^2 - m_1 x) [I^{q_2 + q_1} A(s) v(s)[\eta] \\ &+ I^{q_2 + q_1} F(s)[\eta]] + (m_7 x^2 - m_2 x) [I^{q_1} A(s) v(s)[b] + I^{q_1} F(s)[b]] \\ &+ (m_8 x^2 - m_3 x) [I^{q_1 - 1} A(s) v(s)[b] + I^{q_1 - 1} F(s)[b]] \\ &+ (m_9 x^2 - m_4 x) f_3 \bigg(\frac{v}{\lambda} \bigg) + (m_{10} x^2 - m_5 x - 1) \varphi \bigg]. \end{split}$$

From (H5) and (H6),

$$\begin{split} |v(x)| &\leq |\lambda| \Bigg[I^{q_1} |A(s)v(s)|[x] + I^{q_1} |F(s)|[x] + (|m_6|b^2 + |m_1|b)[I^{q_2+q_1} |A(s)v(s)|[\eta]] \\ &+ I^{q_2+q_1} |F(s)|[\eta]] + (|m_7|b^2 + |m_2|b)[I^{q_1} |A(s)v(s)|[b] + I^{q_1} |F(s)|[b]] \\ &+ (|m_8|b^2 + |m_3|b)[I^{q_1-1} |A(s)v(s)|[b] + I^{q_1-1} |F(s)|[b]] \\ &+ (|m_9|b^2 + |m_4|b)|f_3\bigg(\frac{v}{\lambda}\bigg)| + (|m_{10}|b^2 + |m_5|b + 1)|\varphi| \Bigg] \\ &\leq \Bigg[L_4 \|v\|I_1^q[x] + \bigg(\|p\| + \|v\| \|p\| + L_2 \|v\| \|p\| + P_1 \|p\|\bigg)I_1^q[x] \\ &+ (|m_6|b^2 + |m_1|b)\bigg[L_4 \|v\|I^{q_1+q_2}[\eta] \\ &+ \bigg(\|p\| + \|v\| \|p\| + L_2 \|v\| \|p\| + P_1 \|p\|\bigg)I^{q_1+q_2}[\eta] \bigg] \\ &+ (|m_7|b^2 + |m_2|b)\bigg[L_4 \|v\|I^{q_1}[b] \\ &+ \bigg(\|p\| + \|v\| \|p\| + L_2 \|v\| \|p\| + P_1 \|p\|\bigg)I^{q_1}[b] \bigg] \\ &+ (|m_8|b^2 + |m_3|b)\bigg[L_4 \|v\|I^{q_1-1}[b] \\ &+ \bigg(\|p\| + \|v\| \|p\| + L_2 \|v\| \|p\| + P_1 \|p\|\bigg)I^{q_1-1}[b] \bigg] \bigg] \\ &+ (|m_9|b^2 + |m_4|b)|\lambda||f_3(\frac{v}{\lambda})| + (|m_{10}|b^2 + |m_5|b + 1|)|\varphi| \\ &\leq L_4 \|v\|Q_1 + \bigg(\|p\| + \|v\| \|p\| + L_2 \|v\| \|p\| + P_1 \|p\|\bigg)Q_1 \\ &+ Q_2 L_3 \|v\| + Q_3, \quad \forall x \in \mathcal{J}. \end{split}$$

208 Page 18 of 23 M. Latha Maheswari et al.

Thus, we have

$$||v|| \le L_4 ||v|| Q_1 + (||p|| + ||v|| ||p|| + L_2 ||v|| ||p|| + P_1 ||p||) Q_1 + Q_2 L_3 ||v|| + Q_3 + ||f_4||_{\infty}.$$

Hence, we obtain

$$\|v\| \le \frac{\|p\|Q_1(1+P_1)+Q_3+\|f_4\|}{1-\left\lceil Q_1(L_4+\|p\|(1+L_2))+Q_2L_3\right\rceil}.$$

It follows that Ω is bounded. Hence the operator T has at least a fixed point, which is the solution of BVP (1.1).

4 Numerical Example

In this section, we present an example to demonstrate the application of our results to the class of fractional delay integro-differential equations with and IBCs.

Example 4.1 Consider the fractional delay integro-differential equations associated with IBCs of the type

$${}^{C}D^{q_{1}}v(x) = \frac{1}{80}\left(1 + \sin\left(\frac{\pi x}{2}\right)\right) + \frac{e^{-x}v(x)}{(5 + e^{x})(1 + v(x))} + \int_{0}^{x} \frac{v(s)}{17} ds, \quad 0 < x \le 3,$$

$$v(0) = 1, \quad v'(0) = I^{0.5}v(0.25),$$

$$4v(3) + 6v'(3) = \frac{1}{5}\int_{0}^{x} v(s)ds,$$

$$v(x) = \frac{1}{2x^{2}}, \quad -3 \le x \le 0.$$

$$(4.1)$$

Solution: In view of problem (4.1), we get $L_1 = -65.568239$, and we observe from equation (3.1) that $m_1 = -1.098093$, $m_2 = 0.001147$, $m_3 = 0.001721$, $m_4 = -2.868206e^{-4}$, $m_5 = 0.620680$, $m_6 = -0.274523$, $m_7 = -0.055269$, $m_8 = -0.082903$, $m_9 = -0.013817$, $m_{10} = 0.113432$. For every $x \in \mathcal{J} = [0, 3]$, $q_1 = \frac{15}{7}$, we get

$$||f_1(x, u_1, v_1) - f_1(x, u_2, v_2)|| \le \left\| \frac{e^{-x}}{(5 + e^x)} \left(\frac{u_1(x)}{(1 + u_1(x))} - \frac{u_2(x)}{(1 + u_2(x))} \right) \right\| + \left\| \left(F_2(v_1) - F_2(v_2) \right) \right\|$$

$$\leq \left\| \frac{e^{-x}}{(5+e^x)} \right\| \left[\|u_1 - u_2\| + \|F_2(v_1) - F_2(v_2)\| \right].$$

Similarly for every $x \in \mathcal{J}$, we obtain

$$||f_2(x, s, u_1) - f_2(x, s, u_2)|| \le \frac{1}{10} \left\| \int_0^x u_1(s) ds - \int_0^x u_2(s) ds \right\| \le 0.1 ||(u_1 - u_2)||.$$

Hence for $x \in \mathcal{J}$, we obtain

$$\begin{split} \|f_{1}(x, u_{1}, v_{1}) - f_{1}(x, u_{2}, v_{2})\| &\leq \left\| \frac{e^{-x}}{(5 + e^{x})} \right\| \left[\|u_{1} - u_{2}\| + 0.1 \|(u_{1} - u_{2})\| \right] \\ &\leq \left\| \frac{1}{(5e^{x} + e^{2x})} + \frac{1}{10} \right\| \|u_{1} - u_{2}\|. \\ \|f_{3}(v_{1}) - f_{3}(v_{2})\| &\leq \frac{1}{5} \left\| \int_{0}^{x} v_{1}(s) ds - \int_{0}^{x} v_{2}(s) ds \right\| \leq 0.2 \|(v_{1} - v_{2})\|. \\ \|f_{1}(x, u, v)\| &\leq \left\| \frac{e^{-x}}{(5 + e^{x})} \left(\frac{u(x)}{(1 + u(x))} \right) \right\| + \left\| \frac{1}{10} \int_{0}^{x} v(s) ds \right\| \\ &\leq \left\| \frac{1}{(5e^{x} + e^{2x})} \right\| \left[1 + \|u\| + \|v\| \right]. \\ \|A(x)\| &\leq \left\| \frac{1}{80} \left(1 + \sin \left(\frac{\pi x}{2} \right) \right) \right\| \leq \frac{1}{80} \left(1 + 1 \right) \leq \frac{1}{40}. \end{split}$$

Hence from the above, we get ||l|| = 0.0111, ||p|| = 0.0023, $L_2 = 0.0588$, $L_3 = 0.2$, $L_4 = 0.025$, $Q_0 = 0.0451$, $Q_1 = 18.3305$, $Q_2 = 0.1252$, $Q_3 = 3.8829$, and hence from Theorem 3.2,

$$Z_e = Q_1(L_4 + ||p||(1 + L_2)) + Q_2L_3 = 0.6807 < 1$$

is satisfied. Similarly from Theorem 3.1,

$$Z_u = Q_1 Q_0 + Q_2 L_3 = 0.8515 < 1$$

is also satisfied. Hence, all the hypotheses are fulfilled. As stated in Theorem 3.1 and Theorem 3.2, the considered problem has a unique continuous solution in \mathcal{J} .

It is evident from Figure 1 and Figure 2 that, for the given problem (4.1), the hypotheses of Theorem 3.2 holds true.

Furthermore, it is evident from Figures 3 and 4 that, for the given problem (4.1), the hypotheses of Theorem 3.1 are satisfied. Hence, from Figures 1–4, it follows that there exists a unique continuous solution for the BVP (4.1) in the interval \mathcal{J} .

208 Page 20 of 23 M. Latha Maheswari et al.

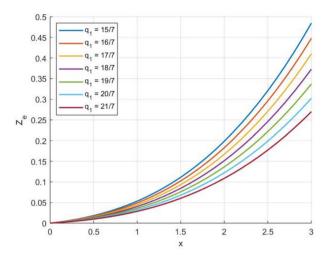


Fig. 1 Z_e values for $x \in [0, 3]$

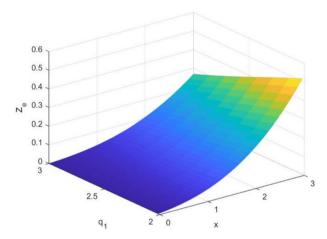


Fig. 2 Z_e values for $x \in [0, 3], q_1 \in (2, 3]$

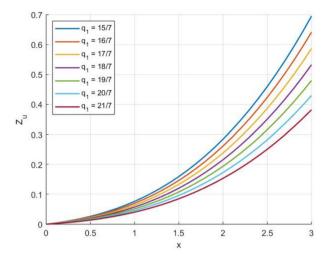


Fig. 3 Z_u values for $x \in [0, 3]$

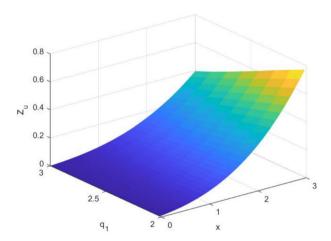


Fig. 4 Z_u values for $x \in [0, 3], q_1 \in (2, 3]$

5 Conclusion

In this study, we have established existence and uniqueness results for fractional delay integro-differential systems of Caputo type subject to nonlocal integral boundary conditions. Uniqueness was demonstrated using the Banach contraction principle, while existence was guaranteed via the Burton-Kirk fixed point theorem. To illustrate the applicability of the theoretical findings, a numerical example was presented, highlighting the effectiveness of the proposed framework in addressing real-world problems. As a direction for future research, this work may be extended to explore controllabil-

208 Page 22 of 23 M. Latha Maheswari et al.

ity and stability properties of such systems, thereby further enhancing their scope and practical relevance.

Author Contributions 1. M. Latha Maheswari: Conceptualization, Formal analysis, Resources, Supervision, Writing - original draft, Writing - Review and Editing. 2. R. Nandhini: Conceptualization, Formal analysis, Investigation, Resources, Writing - original draft. 3. V. Vijayakumar: Conceptualization, Formal analysis, Resources, Writing - original draft, Writing - Review and Editing.

Funding Not Applicable

Data Availability Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

Declarations

Conflict of Interest This work does not have any conflicts of interest.

Competing interests The authors declare no competing interests.

References

- Asif, M., Zada, A., Avram, A.: Qualitative analysis of a coupled system with nonlinear mixed fractional integro-differential equation involving caputo fractional derivative. Journal of Mathematics and Computer Science 38(01), 56–79 (2024)
- Balachandran, K., Kiruthika, S., Trujillo, J.: Existence results for fractional impulsive integrodifferential equations in banach spaces. Commun. Nonlinear Sci. Numer. Simul. 16(4), 1970–1977 (2011)
- 3. Batool, A., Talib, I., Riaz, M.B.: Fractional-order boundary value problems solutions using advanced numerical technique. Partial Differential Equations in Applied Mathematics 13, 101059 (2025)
- Benchohra, M., Henderson, J., Ntouyas, S., Ouahab, A.: Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl. 338(2), 1340–1350 (2008)
- Benchohra, M., Karapınar, E., Lazreg, J.E., Salim, A.: Advanced Topics in Fractional Differential Equations: A Fixed Point Approach. Springer, Berlin (2023)
- Cui, Z., Zhou, Z.: Existence of solutions for caputo fractional delay differential equations with nonlocal and integral boundary conditions. Fixed Point Theory and Algorithms for Sciences and Engineering 2023(1), 1 (2023)
- Derbazi, C., Hammouche, H.: Boundary value problems for caputo fractional differential equations with nonlocal and fractional integral boundary conditions. Arabian Journal of Mathematics 9(3), 531– 544 (2020)
- 8. Derhab, M., Meziane, F.: Existence and uniqueness results for a class of fractional differential equations with nonlocal boundary conditions. Fractional Differential Calculus, 14(1), (2024)
- Kamalapriya, B., Balachandran, K., Annapoorani, N.: Existence results for fractional integrodifferential equations of sobolev type with deviating arguments. Journal of Applied Nonlinear Dynamics 11(01), 57–67 (2022)
- Kattan, D.A., Hammad, H.A.: Advanced fixed point techniques for solving fractional p-laplacian boundary value problems with impulsive effects. Ain Shams Engineering Journal 16(2), 103254 (2025)
- 11. Kilbas, A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations, vol. 204. Elsevier, Amsterdam (2006)
- Kilbas, A.A., Marichev, O., Samko, S.G.: Fractional Integrals and Derivatives. John Wiley & Sons Inc, New York (1993)
- Latha Maheswari, M., Keerthana Shri, K.: Analysis of a multifractional hybrid differential system with impulses. Franklin Open, 100337, (2025)
- Latha Maheswari, M., Keerthana Shri, K., Elsayed, E.M.: Multipoint boundary value problem for a coupled system of psi-hilfer nonlinear implicit fractional differential equation. Nonlinear Analysis: Modelling and Control 28(6), 1138–1160 (2023)

- 15. Latha Maheswari, M., Nandhini, R.: Existence results for nonlocal impulsive fractional neutral functional integro differential equations with bounded delay. In *International Conference on Mathematics and Computing*, pages 391–398. Springer, (2022)
- Miller, K.S., Ross, B.: An Introduction to Fractional Calculus and Fractional Differential Equations. John Wiley & Sons Inc, New York (1993)
- 17. Mohanapriya, A., Sivakumar, V., Prakash, P.: A generalized approach of fractional fourier transform to stability of fractional differential equation. Korean Journal of Mathematics 29(4), 749–763 (2021)
- 18. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
- Priyendhu, K., Prakash, P., Lakshmanan, M.: Invariant subspace method to the initial and boundary value problem of the higher dimensional nonlinear time-fractional pdes. Commun. Nonlinear Sci. Numer. Simul. 122, 107245 (2023)
- Sevinik-Adıgüzel, R., Aksoy, Ü., Karapınar, E., Erhan, İM.: Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 115(3), 155 (2021)
- Sevinik Adigüzel, R., Aksoy, Ü., Karapinar, E., Erhan, İM.: On the solution of a boundary value problem associated with a fractional differential equation. Mathematical Methods in the Applied Sciences 47(13), 10928–10939 (2024)
- SM, S., Kumar, P., Govindaraj, V.: A novel method to approximate fractional differential equations based on the theory of functional connections. Numerical Algorithms 95(1), 527–549 (2024)
- Zhao, K.: Triple positive solutions for two classes of delayed nonlinear fractional fdes with nonlinear integral boundary value conditions. Boundary Value Problems 2015(1), 1–20 (2015)
- Zhao, K., Wang, K.: Existence of solutions for the delayed nonlinear fractional functional differential equations with three-point integral boundary value conditions. Adv. Difference Equ. 2016(1), 1–18 (2016)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law